

Mobile agents using the Tracy
environment

Thomas Rietzler

Submitted in partial fulfilment of the
requirements of

Napier University for the degree of Bachelor of
Science with Honours in Computing

Supervised by Dr. Bill Buchanan

School of Computing
May 2002

Thomas Rietzler BSc (Hons) Computing 1/37

Authorship declaration

I, Thomas Rietzler, confirm that this dissertation and the work presented in it are my
own achievement.

1. Where I have consulted the published work of others this is always clearly

attributed.
2. Where I have quoted from the work of others the source is always given. With

the exception of such quotations this dissertation is entirely my own work.
3. I have acknowledged all main sources of help.
4. If my research follows on from previous work or is part of a larger collaborative

research project I have made clear exactly what was done by others and what I
have contributed myself.

5. I have read and understand the penalties associated with plagiarism.

Thomas Rietzler BSc (Hons) Computing 2/37

Abstract
Mobile agents are often presented as the future of distributed computing. They
introduce a new approach to the traditional client/server architecture, which hides
the network complexity to the end-user and makes data transfers asynchronous.
This is more and more appreciable in a world where the overall network structure is
dynamic, due to the mobility of computer component themselves like mobile phones,
and the fact that servers providing new services appear everyday on the Internet
while some other disappear.
 Mobile agents have tremendous potential, and are subject to a lot of research at
the moment, even if applications of it are not yet wide spread. Agent technology is
up to now only use by academia and a few industrials. But they are expected to
become more popular in the years to come. Their application includes user tracking,
improved client-server communications, and for auditing purposes like network
monitoring.
 This report presents an application of mobile agents under the mobile agent
system Tracy. Its main components are databases, mobile agents, and stationary
agents to interface services with the mobile agent system.
 Gathering data over a distributed system, if not organized, requires a client to
connect and query every server on the distributed system. The application developed
here collects data without having to know which server to query: agent technology is
in charge of the distribution and collection of data. This data is taken from
databases, and extraction is filtered by SQL queries.
 This document reports the rigorous testing of the Tracy environment, with details
on how the application developed with it was designed and implemented, what it
really does, and how well it performs.

Thomas Rietzler BSc (Hons) Computing 3/37

Table of content
1 Introduction 7

1.1 Background 7
1.2 Aims of the project 8

2 Mobile agents theory and investigation on Tracy 9
2.1 Introduction to mobile agents 9

2.1.1 Software agents 9
2.1.2 Mobile agents 9
2.1.3 Agent server 9
2.1.4 Mobility 9
2.1.5 Agent architecture vs. client/server architecture 10
2.1.6 Mobile agents environments 11

2.2 What is Tracy? 12
2.3 How does Tracy works? 13

2.3.1 Management of the logical network and agent servers 13
2.3.2 Types of agents 14
2.3.3 Agent communication 15
2.3.4 Migration 15

2.4 Start Tracy 15
2.4.1 Software requirements 15
2.4.2 Access control 16
2.4.3 Property file 16
2.4.4 Starting and monitoring agents 16

3 Requirements, analysis, design 18
3.1 Requirements for the application 18
3.2 Analysis and design 18

3.2.1 Design of the client and server sides of the application 19
3.2.2 Design of gateway agents 20
3.2.3 Design of concurrent mobile agents 22

4 Implementation details and tests 23
4.1 General considerations on Tracy 23
4.2 Database components and access 23
4.3 Blackboard content types 24
4.4 Migration properties 24
4.5 Migration strategy 24
4.6 Test results 24

4.6.1 Agent strategy and network size influence 24
4.6.2 Agent load influence 26

5 Conclusion 27
5.1 Evaluation of achievement 27
5.2 Directions for future work 28

References 29
Appendix 1: User manual 30
1. Requirements 30
6 Access control 30
7 Property files 30
8 Data source 30

Thomas Rietzler BSc (Hons) Computing 4/37

9 Run the application on server side 31
10 Run the application on client side 32
11 Libraries 32
12 Content of CD 33
Appendix 2: Project diary and Gantt chart 34
Appendix 3: Program listings 37

List of illustrations
Figure 1. Traditional client/server communication 10
Figure 2. Communication with the use of mobile agents 10
Figure 3. The Tracy architecture: Tracy, OSI and TCP/IP. 12
Figure 4. Physical network and Tracy network 14
Figure 5. Tracy User Manager main screen 16
Figure 6. Overall application design 19
Figure 7. Interactions between entities on server side 21
Figure 8. Interactions between entities on client side 21
Figure 9. Size of network and agent strategy influence 25
Figure 10. Agent load influence 26

Thomas Rietzler BSc (Hons) Computing 5/37

Acknowledgements
I would like to thanks my supervisor, Bill Buchanan, for his help during this project,
and for providing the subject of this project which was a pleasure to study.

Thomas Rietzler BSc (Hons) Computing 6/37

 Mobile agents theory and investigation on Tracy

1 Introduction

1.1 Background
Mobile agent technology is nowadays one of the most active research topics in
computer science. It is now proven that many areas could benefit from mobile
agents. Many papers like Mobile Objects and Mobile Agents: The Future of
Distributed Computing? [7] investigated on mobile agents’ concept and theories.
Most of the current research on mobile agents has two general goals: reduction of
network traffic and asynchronous interaction. This research is driven by the fact that
mobile agents will be soon developed at larger scale, for commercial application.
Kotz and Gray [1] predict that, within a few years, nearly all major Internet sites will
be capable of hosting and willing to host some form of mobile code or mobile agents.
But before such a deployment, some issues need to be investigated and some
problems need to be fixed. Security of mobile agent systems and interoperability are
surely the main concerns for commercial development of this technology. Rothermel,
Hohl, Radouniklis [5] investigates on mobile agent security. Standardization efforts
are mostly done by the Foundation for Intelligent Physical Agent (FIPA) and the
Object Management Group (OMG) with Mobile Agent System Interoperability Facility
(MASIF).
 Academic research is more concerned about how to improve mobility and
performance. Following is the call for paper for the ECBS 2002 [8] Conference and
Workshops which reflect the actual research areas in mobile agents:

We seek research contributions and experience reports that address the
performance, interoperability, and applications of mobile agent systems. We
particularly solicit submissions covering but not limited to:

• Mobile agent system architecture design issues.
• "Components-off-the-shelf" for mobile agent systems.
• Quantitative and qualitative analysis and comparison of mobile agent systems.
• Benchmarks and performance analysis of mobile agent systems.
• Design Pattern to improve the performance of mobile agent systems.
• Performance of mobile agents vs. other approaches.
• Scalability of mobile agent systems.
• Resource control.
• Mobile agent applications.
• Design patterns and abstractions that promote interoperability of mobile agent systems.
• Work related to the interoperability and standardization of mobile agent systems.
• Experiences with mobile agent testbeds and publicly accessible servers.
• Agency and service discovery for mobile agents.
• Critical reviews of existing approaches.

Thomas Rietzler BSc (Hons) Computing 7/37

 Mobile agents theory and investigation on Tracy

1.2 Aims of the project
The University of Jena, in Germany, have developed a mobile agent environment
called Tracy which can be used to develop mobile agents using Java. The aim of this
project is to review this environment by testing it with the development of an
application designed to distribute, collect, and filter data over a distributed system,
and test the performance of mobile agents created. The application is required to run
over a distributed system, and be capable of transferring, collecting and filtering data
over it.
 The report splits into three main parts:

• Part 1 [Investigation]. The first part of this report relates to an investigation

on mobile agents and the Tracy environment, under which the application was
developed.

• Part 2 [Design]. The second part relates to the design of the application itself,
what kind of application was chosen, how it works and explaining different
strategies of mobile agents within this application.

• Part 3 [Implementation and Evaluation]. The third part exposes some details
concerning the implementation, as well as the evaluation of the application.

Thomas Rietzler BSc (Hons) Computing 8/37

 Implementation details and tests

2 Mobile agents theory and
investigation on Tracy

This part relates to theory and concepts needed to understand the work done. It is
the result of the study of the Tracy environment, needed before developing an
application using mobile agents.

2.1 Introduction to mobile agents

2.1.1 Software agents
The definition of a software agent is always subject to discussion. Many definitions
are already available, and even if the term can sometimes be misused, no definition
is right or wrong, and no definition is universally recognize. Franklin and Graesser
[2] try to define at best different kind of agents and try to classify them as precisely
as possible.
 Basically, agents differ from standard computer program by the fact they don’t
constitute an application by themselves. They are characterized by their small size.
They aim at reducing human workload by only interacting with users at the
beginning or the end of their process.
 Agents have some characteristics:

• Authority: they have delegation, represent someone and act on behalf of

someone.
• Reactivity: they react to stimuli and learn from their environment.
• Proactivity: they can take initiatives, they are goal driven.
• Autonomy: they have control over their own actions.
• Social ability: they are able to communicate with other entities, and may

cooperate and collaborate with them to reach their goals.

2.1.2 Mobile agents
A mobile agent is an agent that has one more characteristic: its code is mobile.
While a stationary agent executes its code on the same host all its lifetime, a mobile
agent have the ability to transport and execute itself over a network, in a
heterogeneous environment.
 By code mobility, it is meant that the mobile agent not only transfers its code, but
also it’s being: code, data and state. It is possible for it to begin an operation on one
host and continue it on another, while updating its data after the visit of each host.

2.1.3 Agent server
An agent server is also known as the agent execution environment. An agent servers
controls agents: it creates then, executes them, transfers and terminates them. It
provides some services such as inter-agent communication.

2.1.4 Mobility
A feature of mobile agent systems is their ability to move mobile agent from one
place to another. There are two ways to support mobility of a mobile agent: weak
and strong migration.

Thomas Rietzler BSc (Hons) Computing 9/37

 Implementation details and tests

In strong migration, the agent is transferred with its code, data and its complete
state: it allows the mobile agent to be executed exactly from where it was left before
migrating: it resumes itself.
 Weak migration is every other kind of migration which is not strong, therefore
which only transfer code and data when migrating the agent.

2.1.5 Agent architecture vs. client/server architecture
In the traditional client server architecture, all connections to server are initiated
from the client. The advantage is that these connections can be managed in parallel
(Figure 1). With an agent architecture (Figure 2 the network is dynamic, and the
client does not have to know the structure of the network. The fact that agents
communicate with a high-level communication language and work over a logical
network makes them more reliable as the logical network which is dynamic will adapt
itself to the current conditions and be less affected by network failure.

Client

Server

Server

Server

Figure 1: Traditional client/server communication

Client

Serveur

Serveur

Serveur

Figure 2: Communication with the use of mobile agents

Thomas Rietzler BSc (Hons) Computing 10/37

 Implementation details and tests

 Mobile agents differ from traditional client/server application by moving
themselves where the data are, instead of moving the data to where the application
resides. This improves performance of the data collection by requiring less
bandwidth.
 Another advantage is the fact that mobile agents can perform their task
asynchronously, or offline: the host of origin can initiate agents, tell them to migrate,
go offline, and when back online, waiting for agents to come back.

2.1.6 Mobile agents environments
Several mobile agent environments have been developed, as outlined by Naylor, et
al [12]. Each of them has its own functionality: interoperability, migration option,
language used, ease of implementation, and many other functionalities. Someone
has to choose it depending on the requirement and aim of its project.
 Some people will only use one for research on how to improve mobile agent
environments and test the architectures to compare them, as well as improve the
current design. Some other will need one to develop an application, to test if an
environment could be easily deployed or is suitable for commercial purposes.
 Well-known environments are Telescript, Aglets [13], Concordia and JATLite [14]
just to name a few. Naylor [12] evaluated three mobile agent development toolkits
are evaluated, Voyager from Object Space, JATLite and the Aglets Software
Development Kit (ASDK) from IBM, and chose Aglets as being the most suitable for
the prototype. Several developers, though, have had problems in implementing
mobile agents with the Aglet development system. Tracy seems to overcome many
of these development problems.

Thomas Rietzler BSc (Hons) Computing 11/37

 Implementation details and tests

2.2 What is Tracy?
Tracy is a mobile agent system, being developed at Friedrich Schiller University Jena,
in Germany [10]. It is programmed in Java and is therefore not platform dependant,
and was designed with two goals:

• For research purposes on mobile agents, Tracy was developed with an open

agent migration model.
• To provide a mobile agent system suitable for application development relying on

mobile agents.

Mobile agent technology makes distributed application easier to manage and
program as the agent environment does things a developer would have to program
with a traditional architecture. While in TCP/IP, the developer has to deal with 4 OSI
layers, from the transport layer when programming sockets to the application layer,
Tracy deals with transport, session and presentation layers, and so the developer
only has to build his application on top of it.

Protocol

layer
OSI Tracy TCP/IP

7 Application Application

Agent system layer:
agent management

6 Presentation
Package manager layer:

migration process
management

5 Session

Application

4 Transport

Net
transmission
layer: data
exchange

between agent
servers

Net Manager

SATP
(simple
agent

transfer
protocol)

RMI SSL

TCP UDP

Transport

3 Network Internet
2 Data link
1 Physical

Java Virtual Machine
dependant Network

access

Figure 3: The Tracy architecture: Tracy, OSI and TCP/IP

Thomas Rietzler BSc (Hons) Computing 12/37

 Implementation details and tests

Figure 3 shows how Tracy fits within the OSI model (the Tracy environment is in
green) and shows the details of the Tracy layers themselves in comparison to OSI
and TCP/IP. But it doesn’t mean that the developer cannot interact with Tracy: the
developer can make some choice, such the transmission strategy (net transmission
layer), or the migration strategy to use (package process management layer).

2.3 How does Tracy works?

2.3.1 Management of the logical network and agent servers
As seen in Section 2.1.5, a mobile agent system’s particularity is to be independent
from the physical network. The mobile agent system has to maintain a logical
network in some way. In Tracy, an agent server is referred as a node. A node is
made of a hostname, and a server name. These are the value specified in the
property file.
 In version 0.54 of Tracy, which is the one used for this project, an agent server
can either be a domain manager, or a single node. When an agent server is started,
it first looks its neighbourhood for a manager. If it finds one, it registered to the
manager, and acts after as a single node. If it does not find a manager, which means
the agent server is the first one on the network, it starts itself as the manager. The
neighbourhood in Tracy 0.54 is the subnetwork on which the agent server is started,
which the agent server polls by UDP broadcast. This means that the size of the Tracy
logical network with version 0.54 is restricted to the size of the subnetwork. The
domains are dynamic: if the domain manager goes offline, another node will relay it.
The domain manager keeps a record of all the nodes registered to it, pinging them
regularly to keep the network up to date. Some system agents are in charge of this
job. A Tracy domain manager behaves like a DNS server in an Internet network.
 This difference of concept between physical and logical network is represented in
Figure 4. In red, the Tracy logical network created by agent server interconnection.
In black, the network and process to system link. Tracy 0.6, which is not publicly
released at this time, introduces the notion of “master node”, which acts as global
domain manager for local subnetwork managers. It removes any domain limit for the
Tracy network.

Thomas Rietzler BSc (Hons) Computing 13/37

 Implementation details and tests

host

agent server

host

host host

agent server

agent server /
domain

manager
agent server

Ethernet

Figure 4: Physical network and Tracy network

2.3.2 Types of agents
There are two categories, and three types of agents in Tracy:

Stationary agents: For security purposes, mobile agents cannot have direct access
to the host system. Mobile agents are restricted to communicate with the agent
server and other agents. Stationary agents don’t have the ability to migrate, and
they are therefore considered as secure and granted access to the host. They are
used as a dynamic interface between mobile agents with which they can
communicate, and the host system. Tracy defines two types of stationary agents:

o Gateway agents
By convention, gateway agents are used to interface with host’s
applications.

o System agents
By convention, system agents are used to interface with host’s
operating system. In reality, in Tracy 0.54, they are gateway agents
which have two more methods to read and write system entity to the
blackboard1. A gateway agent has also this ability to do so with some
other methods, so the difference between both agents is, up to now
and according to what I was able to access2, purely conventional.

1 cf. agent communication later on
2 the source code of Tracy is not available to the public

Thomas Rietzler BSc (Hons) Computing 14/37

 Implementation details and tests

Mobile agents. Mobile agents are agents travelling between agent servers. They
dock to agent servers, and communicate only via the agent server. They cannot
execute themselves out of this environment. To reach their goals, they have to
communicate with other agents. They are transferred by agent server, on their own
request (they have control ever their own actions) or the request of the agent
server. The migration strategy, which the agent server has to take into consideration
to transfer a mobile agent, is specified in the mobile agent code. They are referred
by a name, and a home platform, and they can be killed by themselves, or by the
agent server that host them.

2.3.3 Agent communication
There are two communication channels in Tracy within agents:

• Message passing. Message passing is a synchronous communication channel

between agents. The sender can be either the agent server or an agent, the
recipient an agent. The recipient agent has to be present on the agent server to
get the mail. If an agent is trying to mail another agent which is not there, an
exception is thrown. An agent in a waiting state still listens for incoming
messages. The reception of a message sets its state back to running. The
implementation of messages allows only the transfer of character string.

• Blackboard. The blackboard is an asynchronous communication channel
between agents. The blackboard is maintained by the agent server, and acts as a
mailbox for agents. Agents have to check the blackboard regularly, the delivery is
not automated. The implementation of the blackboard allows the storage of any
kind of objects on the blackboard. Some types are predefined, like strings,
images, XML content, but the programmer can easily defines its own types.

2.3.4 Migration
Migration strategy and transmission strategy are both open in Tracy: it is possible to
make some choices, depending on what could be best for the application. Different
push and pull strategies have been implemented. Push strategies consist in
connecting to another agent server and transfer the mobile agent’s code (upload
from source to destination), while the pull strategy is initiated by the recipient, who
loads the mobile agent (download from the source to the destination).
 The mobility offered by Tracy is currently a weak form of mobility. Migration of
Mobile Agents in Java: Problems, Classification and Solutions [6] tells why strong
mobility is not easy to implement in Java and gives some solutions.

2.4 Start Tracy

2.4.1 Software requirements
Tracy is not given with everything it needs to run in its package. Tracy first required
a Java Virtual Machine (JVM), version 1.3 or later. Either a Java Runtime
Environment (JRE) or a Java Development Kit (JDK) would do it. I used the JDK
version 1.3.0_02. Then, she requires some JARs (Java Archives) from Sun. These are
the archives for encryption services: JCE (Java Cryptography Extension) version
1.0.2 or later, and JSSE (Java Secure Socket Extensions) version 1.2.1 or later.
These JARs as well as Tracy’s JARs must be added to the classpath.

Thomas Rietzler BSc (Hons) Computing 15/37

 Implementation details and tests

2.4.2 Access control
Tracy has an access control mechanism, which authenticate users before starting an
agent server. The User Manager, which allows the root of Tracy to set user rights,
must then be configured before the first agent server is started.
 When starting a new agent server, a user is asked to provide his login and
password. These are compared with values in the tracy.user file, in the Tracy root
directory. As you can see on the screen shot of the User Manager in Figure 5, it is
possible to set different permissions for each user. The last permission, editing user
database, is usually only allowed by the root.

Figure 5: Tracy User Manager main screen

2.4.3 Property file
The property file (by default tracy.ini) is the configuration file for the agent server. It
contains information such as its name, its hostname, and the properties for the net
layer (type of connection) with port numbers to use. Transmission techniques are
configured here, while migration options have to be specified in the code of agents
themselves.

2.4.4 Starting and monitoring agents
The Tracy GUI is a useful tool while developing mobile agents with Tracy. It allows
the developer to start and interact with agents, with a user-friendly tool. It is
possible to start and stop agents, send messages to agents, read and post data on
the blackboard, see which agents are currently on the hosts. All mobile agents
coming in and leaving the host are logged. It was really indispensable during the
development.
 But while the GUI is very useful during the development phase, it is not very user
friendly, and when the development of the application is finished, there is no more
need to have all the debugging option the GUI provides. The last step in the
development of the application is to instantiate a Tracy server within a Java class,

Thomas Rietzler BSc (Hons) Computing 16/37

 Implementation details and tests

and start agents from this class. The user interfaces, if any, have to be coded within
the main class or the gateway agents.
 The reader should by now have a good understanding of what mobile agents are,
what their characteristics are, and by what Tracy characterize herself. Technical
details of Tracy are presented and explained in papers [3, 4] published by the
developer’s team.

Thomas Rietzler BSc (Hons) Computing 17/37

 Implementation details and tests

3 Requirements, analysis, design

This part reports what kind of application it was decided to implement. It tells why
the chosen application was chosen, what improvement this application could bring
compared to actual technology, and how this application works.

3.1 Requirements for the application
In theory, every kind of application based on the standard client/server architecture
can be ported to mobile agent system architecture. But mobile agent systems have
their strength and weaknesses compared to standard client/server architecture.
Several kind of application can benefit from mobile agent. Here are just a few of
them:

• Parallel processing: the mobile agent is on charge of distributing work to online

hosts, and to retrieve the results to dispatch the global result on the home host.
• Information dissemination: the mobile agent can be used to broadcast

information, perform remote updates.
• Network management, monitoring: the small size of agents is used as an

advantage to keep network resources free for application. We find as well
intelligent agents which are agents coupled with AI algorithm for intrusion
detection.

• Distributed information retrieval, electronic commerce: the mobile agent is
used for data collection and filtering to improve information searching.

The requirement of the technical part for the project was very vague at the
beginning; it mainly depended on the results of the investigation on the
environment.
 My supervisor, Bill Buchanan, was open to any idea. His general ideas as specified
in the contract were to transfer data around a distributed system, or collected data
around a network.

3.2 Analysis and design
My ideas for an application were either a network management tool, either an
ecommerce-oriented tool. The choice was free. Research on the Internet on what has
already been done was mainly focused on network management, so it was decided
to orient the design to the ecommerce tool to do something innovative.
 In order not to limit the application to a specific area (a specific business), it was
decided that agents would collect data from a database, so any business could be
interested. A business selling goods or services online has therefore just to put the
available products in the database, like businesses today put products list on their
web pages. Usually all Ebusinesses have a database behind their web site. Here, the
web site which bridges the user to the database is replaced by a stationary agent.
The user request is carried by a mobile agent, like an HTTP request is carried to a
web site. The difference is that the mobile agent already contains a request when it
arrives on the host, whereas with HTTP, a client has to connect to the web site,
make his choice and request the goods.

Thomas Rietzler BSc (Hons) Computing 18/37

 Implementation details and tests

This kind of system is for demonstration only, its main disadvantage is that all
concurrent businesses targeted by the mobile agent need to have the same database
structure, as the request passed by mobile agent is unique, and is meant to be
distributed to all databases.
 The overall application behaves as if a user was querying a huge database
consisting in several databases. The distribution of queries, and the system of data
collection is invisible to the user.

3.2.1 Design of the client and server sides of the application
Figure 6 shows the overall application design as described before, and defines what
is meant by client side and server side of the application. Specific design of each
software component had to be constantly reviewed during the implementation
phase, as of course not everything worked as planned during the implementation
phase.

Mobile Agent System

network connection

Server side of the client/
server communication

aplication

Client side of the client/
server communication

aplication

Gateway agent /
Database interface

Database

Agent server Agent server

Gateway agent /
User interface

Mobile agent Tracy network

network c
onnectio

n

Application / GUI

Mobile agent

Figure 6: Overall application design

Thomas Rietzler BSc (Hons) Computing 19/37

 Implementation details and tests

3.2.2 Design of gateway agents

Server side gateway agent
The gateway agent on the server side is a bridge between the database and the
mobile agent. It listens for messages from mobile agents, and when it gets one,
extracts the query of it. This query consists in:

• A sequence number
• The name of the database
• The SQL query

The gateway agent then forwards the SQL query to the specified database (step 2 of
figure 7), and post the results of the query on the blackboard (step 4 of figure 7),
with the sequence number as part of the label on the blackboard so that the mobile
agent, that provided this same sequence number, can find its data.
The aim of this sequence number is for many mobile agents to do requests to a
gateway agent without confusion.
 The aim of the name of the database is that it is then possible for a server to host
several databases and have only one gateway agent to bridge them to the mobile
agent system.
 SQL queries allow the design to be compatible with any kind of database. Even if
the developed version only connects to ODBC databases, a new driver, specific to a
database, is easily implemented in this gateway agent. It is therefore possible to
access a wide variety of database, over a wide range of operating system (as Tracy
is platform independent) with the same mobile agent: the mobile agent can operate
over a heterogeneous network and with heterogeneous databases.
 The last action of the gateway agent for the query processing is to send a
message to the mobile agent: in case this one is waiting, it will wake it up (step 5 of
Figure 7). Data has to be passed through the blackboard for two reasons: the first
one is that not all mobile agents will be available for a message delivery when the
gateway would have finished the query processing. The other, and most important
reason, is that complex data structures are more easily transferred from an agent to
another via the blackboard, as it is possible to define our own objects to store on the
blackboard. In our case, the type is a dataset, a structure of extracted results from a
database. If this dataset had to be transferred via messages, it would have to be
converted into a string, and then reconverted back to the original structure at
reception of the message by the mobile agent.
 Figure 7 resumes the situation, showing the sequence of messages and data
transfers within the application on the server side. Note that messages are passed
through the agent server in reality, which is not shown on this diagram.

Client side gateway agent
The client side gateway agent interacts directly with the end-user. It has a GUI,
where the user provides the request (step 1 of Figure 8), launch the mobile agent by
delegating a part of its job (step 2 of Figure 8). When the mobile agent is back, it
posts its results to the blackboard and notify the gateway agent the data is ready to
be processed (step 3 and 4 pf Figure 8), and the gateway agent reads data that has
been found (step 5 of Figure 8).
 The gateway agent is responsible for the creation of mobile agents, and for the
final presentation of results returned by mobile agents before passing data to the
application layer (step 6 of Figure 8).

Thomas Rietzler BSc (Hons) Computing 20/37

 Implementation details and tests

gateway agent

Database

Agent Server

mobile agent 1. request notification

2. SQL request 3. Dataset

4. post dataset to
blackboard

5. optional: notify data is ready

6. retrieve data
from

blackboard

Figure 7: Interactions between entities on server side

Application / GUI

mobile agent gateway agent
2. delegate job

4. notifiy that data is ready

6. Display data1. make an
order

3. post data
to

blackboard

agent server

5. retrieve
data from

blackboard

Figure 8: Interactions between entities on client side

Thomas Rietzler BSc (Hons) Computing 21/37

 Implementation details and tests

3.2.3 Design of concurrent mobile agents
Many strategies for the design of mobile agents were conceivable. Two of them have
been implemented to be tested against each other in a performance test.

Common part for both agent strategies:
At their creation, the gateway agent, client side, passes arguments to the mobile
agent to define the job of the mobile agent.
Then, after the mobile agent migrated to a host, it tries to send a message to the
gateway agent, server side (step 1 on Figure 7), and ask for the data its wants. If no
gateway agent is found, the mobile agent continues its route.

First agent strategy: Agent A
If a gateway agent is found, which means the message was successfully
delivered, the mobile agent continue its message delivery to all gateway
agent until it did all nodes of the network and went back home. It then goes
for the same tour, in the same order as the first one, checks the blackboard
(step 6 on Figure 7) of each node for the result of the query it previously
sent. It takes the result if there is one and go on until back home, where it
posts all the results to the blackboard and notify the client side gateway agent
that it finished its job.

Second agent strategy: Agent B
If a gateway agent is found, which means the message was successfully
delivered, the mobile agent waits for the query it sent to be processes. When
the gateway agent has processed the query, it posts the result on the
blackboard and sends a message to the mobile agent to wake it up (step 5 on
figure 7). At reception, the mobile agent checks the blackboard, takes the
result and goes to the next node. At the end of the network tour, the mobile
agent goes back home, posts all the results to the blackboard and notifies the
client side gateway agent that it finished its job.

Mobile agents post their results to the blackboard for the same reasons the server
side gateway agent posts its results to the blackboard: we deal here with complex
data structure. Message communication is only used to notify agents of a predefined
event.
 Agent A would, in a distributed system, be the best choice in theory: it is less
prone to be delayed or even be stacked at a node which does not response quickly,
due to an overload or a malfunction. But this first agent has the disadvantage of
doing two network tours instead of one for agent B, and it may take longer to
complete the overall process in a small and fast processing network. We will see later
which agent is the most effective depending on the size of the network.

Thomas Rietzler BSc (Hons) Computing 22/37

 Implementation details and tests

4 Implementation details and tests

This part present the points were choices had to be done, followed by benches of
mobile agents created for the application.

4.1 General considerations on Tracy
There is not a wide choice concerning implementation: agents have to be coded in a
very strict way, as an agent extends a class already defined. Abstract methods must
be defined; states have to be carefully control to avoid agents waiting for resources
they will never get. It sometimes gets close to critical system programming. A
mistake in the code of an agent can severely affect the agent server itself:
robustness is not a characteristic of Tracy. Tracy is an alpha version, and things are
far to be perfect. It happens that the manager does not reference a part of the
network or loose a part of it while agents are travelling, resulting in agents trapped
on hosts and even agent server to crash.

4.2 Database components and access
One of the advantages of the Tracy environment is that it is platform independent.
Agents are supposed to be able to travel around a heterogeneous environment, and
everything has been done to keep this real for the database connection.
First of all, the language used to query the database is the SQL language. It is the
language supported by all databases.
 The tests were performed with a Microsoft Access database, but the gateway
agent developed to bridge the database to the mobile agent uses an ODBC driver, so
any ODBC compliant database would do the job. Moreover, the Java database
connectivity is done with JDBC, and many drivers are available for non ODBC
compliant database on the Java web site [9]. A simple update of the driver would
allow any specific database to be accessed by the gateway agent. Mobile agents are
not concerned by the database type or platform operating system.
 The server side gateway agent was connecting the database with the java.sql
package, released with the JDK. It appears soon after that it would be easier to
organize database’s data with Jbuilder components. Jbuilder provide many containers
for databases’ results, for data representation, and methods for database
connectivity and data organization.
 The data extracted from the database is stored in a Borland QueryDataSet
component. This component has many advantages, and makes data manipulation
easier. The problem of this object is that its content is not serializable, only its
structure is. When a mobile agent migrates, its objects are serialized, and if the
mobile agent contain a QueryDataSet, the references to the local host will not be
found on the host it is migrating to, and content will be lost.
 To overcome this problem, the QueryDataSet is saved to a text file by the server
side gateway agent. This operation generates two files: a file with the raw data, and
a file specifying the structure of the dataset. These files are stored as an array of
bytes, which is serializable. The mobile agent stores the files as an array of bytes in
two distinct Java Vectors. At each node, an element is added to each Vector.
When the mobile agent is back on its home platform, it posts the Vector themselves
to the blackboard of the agent server, and the client side gateway agent is in charge

Thomas Rietzler BSc (Hons) Computing 23/37

 Implementation details and tests

of the reconstitution of the files: files are saved to the local host, then they are
reconverted back to QueryDataSets (the ones from the servers), and then all
QueryDataSets are concatenated to form only one QueryDataSet which is displayed
to the GUI as the result of the request over the distributed system. The end-user
cannot see in the result table which information comes from each host: it appears
like if information was coming from only one host.

4.3 Blackboard content types
Any kind of data can be posted to the blackboard. But their type must be defined, so
that agents which retrieve this data can know what its type is and handle retrieved
data correctly. Any object cannot be posted straight to the blackboard: a class,
implementing the existing BlackboardContent class, must be created to define a new
blackboard content type.
 Two new blackboard content types had to be defined for the application. The first
one is used on the server side of the application: it is the array of bytes representing
a binary file. The second one is used on the client side of the application: it is the
Vector of arrays of bytes. These classes are shown in Appendix 2.

4.4 Migration properties
For the migration implementation, a fixed route is not set: the mobile agent first
identifies which host is the domain manager, and migrates to it. Then the mobile
agent asks the manager what are all agent servers connected to itself. From there,
the mobile agent visits these nodes sequentially. When all nodes are checked, the
mobile agent returns on the home platform.

4.5 Migration strategy
Many networks, among others enterprise’s networks, have a policy to block incoming
connection from the external network. The migration strategy chosen here is a push-
to-all strategy: code and data is pushed to the destination host at once. In this case,
an agent server must be allowed to accept incoming connections: the destination
agent server listens for incoming connection, waiting for mobile agents to be pushed
by other hosts to it. A user has to ensure that an agent leaving the network can
come back, otherwise agent technology cannot be deployed.

4.6 Test results
All the tests were executed over a single switched 10Mbps subnetwork of P4 1GHz
computers with 256 of RAM under Windows NT4. The test results measures the
difference of time between agent’s tour start (agent leaving home host) and agent’s
tour end (agent re-entering home host). The tests were performed with different
number of servers, distinct from the client which generates mobile agents.

4.6.1 Agent strategy and network size influence
The first sets of results allow the performance comparison between agent strategies
that were introduced in 3.2.3 in function of the network size. The data carried here
by agent is what the application was designed to carry: request to be distributed,
and result of the request of each node.

Thomas Rietzler BSc (Hons) Computing 24/37

 Implementation details and tests

5 servers network

0
1000
2000
3000
4000
5000
6000
7000

1 2 3 4

try number

m
s Agent A

Agent B

3 servers network

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 3 4

try number

m
s Agent A

Agent B

1 server network

0
1000
2000
3000
4000
5000
6000

1 2 3 4

try number

m
s Agent A

Agent B

Figure 9: Size of network and agent strategy influence

Note that the first try is always much longer than the others. This can be explained
by the fact that some variables in the agent server may not have been yet initialised.
 We can see from Figure 9 results that, as it was suggested in 3.2.3, agent A,
which does not wait for the host to process the request, operate faster that agent B,
even if agent A travels twice as agent B. Transmission time is therefore less
important than processing time for agent. This can be understood by the small size
of agents: they are fast at migrating. Agent B can go even worse if the server is busy

Thomas Rietzler BSc (Hons) Computing 25/37

 Implementation details and tests

at processing other requests. In our tests, the gateway agent was the only user
process to run, but if it is not, the performance can really be affected. The first
versions of agent B were hogging the CPU in a while loop while waiting for the results
to be posted by the gateway agent, instead of being set to waiting mode. This
resulted in a delay of about 15 seconds before the NT scheduler gives the gateway
agent a chance to run.
 It was suggested as well in 3.2.3 that agent B would maybe be faster over small
network. It is the case for the 1 server network test, but the difference between both
agents’ timing is not really significant (less than a half millisecond), and we may not
consider a client and a server alone as a network.

4.6.2 Agent load influence
We can see in figure 10 that agent can be very penalized by their size. Data has to
be stored in objects. This is a serious limitation, Java very quickly generates an
OutOfMemory exception when trying to create large objects. To reach such a high
amount of data to transfer with a database request, the request has to be really wide
and the database or the network very large. Nevertheless, there is a solution in this
case, which will keep the advantage of using the agent architecture for distributing a
request, and take the advantage of a client/server architecture to get the result. The
solution would be to keep agent A for distributing the query, to open a listening port
on the client, and for the server side gateway agent to make a connection to the
client to transfer data instead of posting data and having a agent to retrieve it.
Therefore, data size is not anymore a constraint. It could as well speed up the
process, as as soon as the data is available, it is transmitted to the client. This could
be used for online peer to peer file sharing.

5 servers network, agent A

0

5000

10000

15000

20000

1 2 3

try number

m
s

1kB file
68 kB file
134 kB file

Figure 10: Agent load influence

Thomas Rietzler BSc (Hons) Computing 26/37

 Conclusion

5 Conclusion

5.1 Evaluation of achievement
Tracy is a good environment for research, but is not robust enough to allow any
serious application based on her. The agent server crashed quite often during the
tests. The logical network convergence time is also sometimes very slow, notably
when recovering from an agent server crash; and the best recovery procedure is to
kill all agent servers and restart them all. But we cannot blame the environment, its
aim is not to guaranty stability. Tracy is for the moment only an alpha version.
 However Tracy looks promising. A lot of functionalities are available, and her
developers are willing to enhance actual features and extend functionalities in future
versions, such as extended mobility strategy and allow larger domain management.
Even if programming for a given environment can be constraining, Tracy offers as
well some liberties to the programmer, such as transmission strategy, migration
strategy, definition of types for data on blackboard.
 The goals of the application have been achieved, the application is capable of
collecting and filter database content, and present this information as if it was
coming from only one host. The distributed system is totally invisible to the end-
user, who sees the distributed system as a mainframe computer containing all data
that can be found on the network.
 The three domains specified in the requirements have been covered by this
application:

• Transfer data over a distributed system: distribution to all online hosts
hosting the specific database (directed broadcast) of one same request.

• Data collection: the result of the request is taken back to the source.
• Data filtering is made by the request itself: the entire database is not taken

back to its originator, only data that has been extracted from the database
according to the request is. The SQL language is the filter for database
content.

In terms of implementation, it can be seen that the advantage of mobile agents over
traditional techniques for some application, including the one that has been studied
here with data collection over a distributed system, is absolutely incontestable.
Mobile agents puts fewer burdens on both developer and end-user, makes
transactions faster and more reliable with the management of a dynamic network
infrastructure. The perspective of the underlying network is totally changed: the
developer does not deal anymore with static addressing, and the administrator of a
network does not have to reconfigure application if a change in the topology is made.
A similar design to the one proposed over the traditional client/server architecture
would request a static server to act as a manager and refer all nodes available for a
request. Static addresses would have to be entered at each node for them to connect
this central server or one of its backup.
 Agent technology also provide a more secure design in comparison to a remote
database access: server data and database are only accessible by the gateway agent
hosted by the server. End-user don’t have any direct view and access to the host
content, and the manager of the host can apply specific restriction by modifying the
gateway agent hosted.

Thomas Rietzler BSc (Hons) Computing 27/37

 Conclusion

It has been seen as well those mobile agents have to keep their small size to stay
efficient.

5.2 Directions for future work
Gathering information from a distributed database was a way to keep the design
neutral, so it can be used in any context on any system. The application developed in
this way can be used as a middleware itself. Everything has been done for the
application to be compatible over a heterogeneous network, like Tracy and mobile
agent systems in general: ODBC databases, SQL language, easy upgrade of the
database driver on the gateway agent would allow anyone to use this application.
The SQL language allows retrieval of data from a database, but if the rights of the
database are set up to accept modification, the SQL language can be use to post or
modify data from the database.
 Migration strategy could be improved and automated to go through firewalls, by
implementing a pull strategy instead of the current push strategy, which would allow
agents to reach hosts protected by firewalls.
 Another problem which has not been taken into consideration is that an agent can
be lost, if for example the node on which the mobile agent is goes offline without
warning. This can be detected with a timer on the client, which can send another
agent after a given time if the first one didn’t come back

Thomas Rietzler BSc (Hons) Computing 28/37

References

[1] Mobile Agents and the Future of the Internet, David Kotz, Robert S. Gray.

[2] Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. By

Stan Franklin and Art Graesser, Institute for Intelligent Systems, University of
Memphis.

[3] Concepts and architecture of the Mobile Agent Tracy, Braun, Erfurth, Rossak.

[4] An introduction to the Tracy Mobile Agent System, Braun, Ertfurth, Rossak.

[5] Mobile Agent Systems: What is Missing? K. Rothermel, F. Hohl, N. Radouniklis.

[6] Migration of Mobile Agents in Java: Problems, Classification and Solutions.

Illmann, Kargl, Weber, Kruger.

[7] Mobile Objects and Mobile Agents: The Future of Distributed Computing? Danny

B. Lange.

[8] IEEE Conference and Workshops on Engineering of Computer-Based Systems.
 http://www.cigital.com/conferences/ecbs02/index.html

[9] List of JDBC drivers: http://industry.java.sun.com/products/jdbc/drivers

[10] Tracy home page: http://tracy.informatik.uni-jena.de

[11] Mobile Agents in Network Management Applications, MSc thesis, Markus Naylor,

Napier University, November 2000.

[12] Buchanan WJ, Naylor M, Scott AV, "Enhancing network management using

mobile agents", Proceedings Seventh IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (ECBS 2000). IEEE
Comput. Soc. 2000, pp.218-226.

[13] Aglets, http://www.trl.ibm.com/aglets/

[14] JATLite, http://java.stanford.edu/.

Thomas Rietzler BSc (Hons) Computing 29/37

http://www.cigital.com/conferences/ecbs02/index.html
http://industry.java.sun.com/products/jdbc/drivers
http://tracy.informatik.uni-jena.de/
http://www.trl.ibm.com/aglets/
http://java.stanford.edu/

Appendix 1: User manual

Requirements
The only external software requirement to run the application is to have several
workstations over the same subnetwork, all having a JRE 1.3 or later installed.
Mobile agents extend an example file given with the environment named
RunningTour, which visits all nodes of the network. This file is in the directory
/examples/agents/traversenet

Access control
The program includes my login and password for Tracy, but it should expire
sometimes in 2002. The root password is “root”, and in case my login is expired, the
root access should be use to create new accounts. The files containing login and
password are: gtwAgent.java and requestAgent.java, so they may need a few
modifications for another account holder.
 To access the User Manager screen, the classpath need to be loaded (file
class.bat) and the following command be entered: java
de.unijena.tracy.usermgmt.Gui. Alternatively, the file tracy.user (in the Tracy
root directory) can be replaced by the user’s one if a user database has already been
configured.

Property files
The name of the property file on the server side is gtwprop.ini, and is
clientprop.ini on the client side. These two files need to be configured for the
workstation the application runs under. The most important property that will not
allow the application to start is the agentserver.fqdn property which must be set to
the host name of the workstation (which is given by an nslookup on the IP of the
host). This property must be set with the same string the station is referenced by the
current DNS server. If the hostname is wrong or no DNS servers are found, Tracy
fails to start.
 I developed parts of the project on a standalone station (not connected to the
Internet) when I was not yet dealing with agent migration, and I used Simple DNS
Plus to trick the reverse DNS resolution mechanism of Tracy. Other properties can be
changed by advanced users, but it should not be a requirement for the application to
run.

Data source
The database must be referenced on the server side. In windows, an ODBC data
source must be added. To add a source, go in the Control Panel, then Administrative
tools, then Data Sources (ODBC), and here add the database you wish to access. An
MS Access database example is given in the /base directory. All databases over the
distributed system must have the same source name (name that you can specify for
the request when entering the SQL command to perform over the distributed
system) and the same data structure (number of columns and columns name). This

Thomas Rietzler BSc (Hons) Computing 30/37

is an absolute condition for the application to work! If databases don’t have the same
structure, the client side gateway agent will be unable to merge results.

Run the application on server side
A batch file has been created, containing the classpath and command line. This file is
server.bat in the Tracy root directory.

The server side is only a command line, it should look like this:

Thomas Rietzler BSc (Hons) Computing 31/37

Run the application on client side
A batch file has been created, containing the classpath and command line. This file is
client.bat in the Tracy root directory.

The GUI should look like this:

The first field (ODBC remote database name) is the name specified when adding a
database source for the targeted database. The next field is the name of the gateway
agent server (by default, “dbs”, but which can be changed by modifying the file
/gtwAgent.java which starts the server side gateway agent). The third field to
complete contains the name of the mobile agent to use. Two of them have been
implemented: DbRunningBbd (agent A) and DbRunningMsg (agent B). The fourth
field is the SQL request to be distributed. Only the button “Start agent” works. It
starts the mobile agent specified in the Running agent name field.

When the mobile agent comes back, the timing information appears in the left
bottom box, and the results in the right array.

Libraries
The /lib directory contains all files needed that are not agents but are part of the
application but can be used by other application. This directory contains:

• Tracy libraries
• Sun JSSE and JCE libraries
• Some Borland JBuilder3 libraries
• Blackboard content types defined for this specific application
• A timer (called by agents for bench purposes)

Thomas Rietzler BSc (Hons) Computing 32/37

• An object which stores files as byte array.

Note that one of the Borland libraries had to be modified and recompiled to be
compatible with the JDK 1.3. The file is jbcl3.1.jar, originally named jbcl3.0.jar. Be
careful not to use the original Borland file, or use a compatible JDK 1.3 library (which
should be the case for new releases of for patched version of JBuilder 3).

The classpath must include all material in the lib directory, as well as path to the
class used by the main program. The complete classpath is set in the two batch files,
client.bat and server.bat. This classpath is set for the root directory of the application
to be h:\tracy. If the application is installed somewhere else, the drive letters must
be changed (and if necessary the directory names).

Content of CD
This section gives the content of each directory

•

•

•

•

•

•

•

•

Root directory
Property files. Policies files. User management file. Batch files to run the application.
Note that the root directory needs disk write access. The application cannot be
executed from CD. Data extracted from databases is saved to files both on server
and client. These files are stored in the root directory (*.txt and *.schema), and they
are not automatically deleted (but they can be deleted, the good operation of the
application does not depend on it).

/base
Microsoft Access database sample (for use within the application).

/bin

/doc
Java doc of Tracy (given with the environment).

/examples
Examples given with the environment.

/napier
Developed agents code.

/lib
Tracy libraries. Sun libraries. Borland libraries. Classes of general purpose developed
during the project.

/ref
Useful publications on Tracy and on mobile agents.

Thomas Rietzler BSc (Hons) Computing 33/37

Appendix 2: Project diary and Gantt chart

Week 1-2:
¾ Contact Bill Buchanan, get information on the project and on what is

expected.

Week 3-5
¾ Go to the Tracy web site, download the environment and the papers.
¾ Reading of the documentation.
¾ Initial presentation on week 5.

Week 6
¾ Meet Aleem, a master student that study on Tracy and who present

me the environment, how to start an agent server, the importance of
classpath and jars.

¾ Download of Sun libraries
¾ Configuration of the environment on the H:/ drive
¾ Configuration of the user access

Week 7-9
¾ Configuration of property files
¾ Start agent servers
¾ Start agents given as samples with the environment.
¾ Test of the samples

Week 10-11:
¾ Meeting with Bill to talk about what I think about for the application

and what he wishes to see achieved with the application.
¾ Finalize the design in accordance with the latest investigation results

on Tracy.

Week 12 to 14:
¾ Exams period, quite busy, no time to start development, but thinking

about how to implement the design.

Week 15:
¾ Development of the database connection, and “server side” of the

application with java.sql classes
¾ Development of the blackboard content type for database resultsets

(Java.sql)

Week 16:
¾ Start the development of the client side of the application

Thomas Rietzler BSc (Hons) Computing 34/37

¾ Realize that it is quite difficult to perform operation on resultset with
java.sql libraries, decide to migrate from java.sql to Borland jbuilder3
component for database components.

Week 17:
¾ Re-implementation of server side gateway agent with Borland

components.
¾ Start the development of the first mobile agent (agent A).
¾ Development of the graphical interface, client side, with Borland

component.
¾ Blackboard content type upgraded to handle jbuilder3 components.

Week 18
¾ Project review: the application is not fully functional, both client and

server side are finished but mobile agents are not ready yet.

Week 19-21
¾ Go on with the development of Agent A
¾ Start development of agent B.
¾ Problem: Borland component’s content does not go through network,

try to find why.

Week 22
¾ Group project review with Bill
¾ try to find a database resultset container that serialize its content

Week 23:
¾ Development of the conversion from datasets to binary files to byte

array which are serializable. Serious modification to all agents to do
conversions.

¾ Upgrade of blackboard content type

Week 24:
¾ Agent A finally works.
¾ Contact Peter Braun from the developer’s team of Tracy to know how

to set Tracy to run over multiple subnets.

Week 25:
¾ Agent B works
¾ Jan Eismann from the developer’s team of Tracy sends me a new

version of Tracy not release that is supposed to work over multiple
subnet, but tests are unsuccessful, so final tests will only be performed
over one subnet.

Week 26:
¾ Test of the application and of mobile agents
¾ Instantiation of Tracy servers and agent in class files to get rid of the

Tracy GUI and have an application which is easy to run.

Thomas Rietzler BSc (Hons) Computing 35/37

 G
a
n

tt
 c

h
a
rt

N
º

N
om

 d
e

la
 tâ

ch
e

1
in

ve
st

ig
at

io
n

on
 T

ra
cy

2
re

qu
ire

m
en

ts
 a

na
ly

si
s

an
d

de
si

gn
 o

f t
he

 a
pp

lic
at

io
n

3
im

pl
em

en
ta

tio
n

of
 s

er
ve

r g
at

ew
ay

 a
ge

nt
4

im
pl

em
en

ta
tio

n
of

 c
lie

nt
 g

at
ew

ay
 a

ge
nt

5
im

pl
em

en
ta

tio
n

of
 m

ob
ile

 a
ge

nt
 A

6
im

pl
em

en
ta

tio
n

of
 m

ob
ile

 a
ge

nt
 B

7
te

st
 o

f t
he

 a
pp

lic
at

io
n

15
22

29
05

12
19

26
03

10
17

24
31

07
14

21
28

04
11

18
25

04
11

18
25

01
08

15
N

ov
 0

1
D

éc
 0

1
Ja

n
02

Fé
v

02
M

ar
 0

2
A

vr
 0

2

Appendix 3: Program listings

The listed programs are the following ones:
•

o
o

•
o
o

•

•
o
o

•
•

•

Gateway agents:
DbMiner.java (client side).
DBgwBbd.java (sever side).

Mobile agents:
DbRunningBbd.java (Agent A).
DbRunningMsg.java (Agent B).

DBFile.java : defines the Object DbFile, which is a file stored as a byte array
(which is serializable).
Blackboard content types:

BBDBFileContent.java
BBFileVectContent.java

Timer.java (used by mobile agents to time the trip).
gtwAgent.java : the application, server side. Instantiate the server according
to the specified property file and start the gateway agent.
requestAgent.java : the application, client side. Instantiate the server
according to the specified property file and start the gateway agent.

	Supervised by Dr. Bill Buchanan
	Introduction
	Background
	Aims of the project

	Mobile agents theory and investigation on Tracy
	Introduction to mobile agents
	Software agents
	Mobile agents
	Agent server
	Mobility
	Agent architecture vs. client/server architecture
	Mobile agents environments

	What is Tracy?
	How does Tracy works?
	Management of the logical network and agent servers
	Types of agents
	Agent communication
	Migration

	Start Tracy
	Software requirements
	Access control
	Property file
	Starting and monitoring agents

	Requirements, analysis, design
	Requirements for the application
	Analysis and design
	Design of the client and server sides of the application
	Design of gateway agents
	Server side gateway agent
	Client side gateway agent

	Design of concurrent mobile agents

	Implementation details and tests
	General considerations on Tracy
	Database components and access
	Blackboard content types
	Migration properties
	Migration strategy
	Test results
	Agent strategy and network size influence
	Agent load influence

	Conclusion
	Evaluation of achievement
	Directions for future work

	References
	Appendix 1: User manual
	Requirements
	Access control
	Property files
	Data source
	Run the application on server side
	Run the application on client side
	Libraries
	Content of CD

	Appendix 2: Project diary and Gantt chart
	
	Week 3-5
	Week 6
	Week 7-9
	Week 18
	Week 19-21
	Week 22

	Appendix 3: Program listings

