Name:

Course: Introduction to .NET
Title: Introduction
Instructor: Bill Buchanan

NAPIER UNIVERSITY
EDINBURGH SCOTLAND

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

Module 7

Module 8

Module 9

Introduction to Object-Orientation, Introduction to .NET, Overview of
NET Framework, .NET Components. C#. Introduction to Visual Studio
Environment.

Variables and Types, Naming Variables, Using Built-In Data Types, Vis-
ual Studio Environment: Design Surface - dynamic help; Toolbox; Code
Page; Properties Window; Solution Explorer.

Converting Data Types, Control structures: if, for, while, foreach, switch.

Afternoon — File handling — looking up details from help, Methods, Pa-
rameter passing, Variables and scope.

Review of Day 2, Converting Data Types, Control structures: if, for,
while, foreach, switch.

Afternoon — Brief description of Arrays, Type Casts, Overview of Sys-
tem.Collections, ArrayLists and HashTables, Sorting, Enumerators.

Using Reference-Type Variables , Using Common Reference Types, The
Object Hierarchy, Namespaces in the .NET Framework, Debugging
techniques, breakpoints, line stepping, call stack, locals window.

Classes and Objects, Using Encapsulation, C# and Object Orientation,
Defining Object-Oriented Systems, Deriving classes, Implementing
classes, Private, public, internal and protected, Using Interfaces, Abstract
classes, Using Constructors Initializing Data, Objects and Memory, Re-
source Management, Object Browser, Class View.

Methods and overloaded methods, Exceptions, Intellisense and over-
loaded methods, Enumerations and string = enumeration conversion.

Module 10 Using Modules and Assemblies, XML (read only), Serialising classes.

Timetable:
Mon Tue Wed Thu Fri Mon Tue Wed Thur Fri
21 22 23 24 25 28 29 30 31 1
March | March | March | March | March | March | March | Mar Mar April
Morning Mod 1 | Mod 3 Mod 5 Mod 7 | Mod 9
Afternoon | Mod2 | Mod 4 Mod 6 Mod 8 | Mod 10

Agilent .NET Course: Introduction 2

1

1.

Introduction

1 Introduction

The first module provides a basic introduction to the .NET. It covers:

Visual Studio Environment.
Introduction to Object-orientation.
.NET Framework.

Benefits of C# over VB.

NET Components.

.NET Languages.

NET uses a newly developed language named C#, which has evolved through C++,

and has adopted many of the object-oriented ideas from Java. The Visual Studio en-

vironment provides a complete system for many development areas, including;:

@

@

@ @

Console applications. These are created in a command window, and are excel-
lent for the text-based programs, such as utility programs.

Windows applications. This provides applications which use standard Win-
dows elements, such as buttons, list boxes, data grids, and so on.

Windows services. These are background processes which run silently can pro-
vide services to the user, such as supporting print facilities.

Web applications. This include Web page design, which is enhanced with C#
code which runs behind the page. This allows increased usability and interaction
over normal Web pages. The standard Web page format used on Microsoft Web
servers are ASP files.

Web services. These are service programs which run on Web servers.

Mobile applications. This supports the development for hand-held and mobile
devices.

The .NET Framework is a standard software installation for Windows XP, Windows
2000 and Windows NT, and supports robust applications, and increased security.
This can be used with the Visual Studio 2003 environment which provides an envi-
ronment for the rapid development of applications. Software development, in the
past, has been error prone, especially in that there was no guarantee that programs
would run in a predictable way, especially as many of the resources required for the

Agilent .NET Course: Introduction 3

program had to be determined once the application was executed. A key factor in
Visual Studio 2003 is that it tries to aid the development with intelligent predicting
on the syntax and usage of the system elements. These should lead to applications
which are more robust, and which are free from run-time errors.

1.2 .NET Framework

The PC has slowly evolved with ever-increasing operating system components. Un-
fortunately, these additions make version control difficult. Microsoft has thus tried
to overcome this by creating a common framework in which programs run. This
framework should be easier to control and to update, where bug fixes can be up-
dated with news downloads. Generally, Microsoft have further developed object-
orientation, and integrated many of the new techniques that Java created, such as
operating system/hardware independence. They have also, for the first time, binded
the .NET Framework to the Windows environment, which should improve security
and allow enhanced integration with system components, such as using Microsoft
Word as an editor, or Microsoft Excel to create and process spreadsheets.

Figure 1.1 shows the typical steps taken in developing a program. Initially the
source code is converted into object code (OB]J) using a compiler. This converts the
code into a form which is matched to the hardware of the system, but cannot be run
as it does not contain the basic elements of a program, such as routines which inter-
face to the input/output. These elements are integrated with the linker, which takes
all the created object code files, and searches in the static libraries for any code that
is required to produce the executable program. The program can then access system

routing through API (Application Programming Interface) calls, such as in creating
Windows, or interfacing to networking functions. These API calls are typically con-
tained in run-time libraries (DLL’s), which contain the code which implements the
require function.

121 Win32 API
The Win32 API library contains many routines:

e Creating windows. e Memory management.

e Windows support functions. e GDI (graphical device interface).

e Message processing. e Bitmaps, icons and metafiles.

e Menus. e Printing and text output.

e Resources. e Painting and drawing.

e Dialog boxes. e Filel/O.

e User input functions. e Clipboard. Support for public and

Agilent .NET Course: Introduction 4

private clipboards.

Registry. Support for functions
which access the Registry.
Initialization files. Support for
functions which access INI files.
System information.

String manipulation.

Timers.

Help files.

File compression/decompression.
DLLs.

Network support (NetBios and
Windows sockets 1.1 APIs).
Multimedia support (sound
APIs).

OLE and DDE (dynamic data ex-

Processes and threads. change).
Error and exception processing. TrueType fonts.
OBJ file
— Compilation Linker EXE
Program
Source
Code
(CIC++
VB)
Static
Libraries
(Appllcatlon
Programming
Interface)
gdlSZ.dIIJ_ oIe32.dIIJ_
Figure 1.1: Traditional stages of program development
1.2.2 .NET Enhancements

Software development for the PC has developed through the use of languages such
as C++, Delphi and Visual Basic. These languages are all focused on producing Win-
dows-based programs using the x86 architecture. The computing industry, though,
has moved over the last few years, with the advent of the Internet and Java. With
Java, Sun Microsystems have tried to produce programs which could be run on any
type of hardware. This has the advantage that the program can be produced for a
range of hardware, including Apple-based computers and hand-held devices. There
has also been a move toward using software routines which are not necessarily
based on the host computer, and in integrating WWW services with programs. This
integration is illustrated in Figure 1.2.

In general the current weaknesses of software development which have been
overcome with .NET are:

Agilent .NET Course: Introduction 2

ASP VB .NET C# ——

C++

Visual Studio
Executable
-] Program I

H
s v “a

ASP COM+ (A Aliszlition
WWW (Distributed ppiicatic
. Programming
Services Components)
Interface)

.NET Platform

Figure 1.2: .NET Integration

Lack of support for different hardware. .NET overcomes this in a similar way
to Java in that it produces an intermediate code known as MSIL (Microsoft In-
termediate Language) which when run with the CLR (Common Language
Runtime) produces an executable program which matches the hardware.
Difficult to integrate different programming languages. This is a problem with
most software development environments, especially in representing the vari-
ables in the same way. .NET overcomes this by producing a standardized
system for data representation, known as CTS (Common Type Representation).
The compiler also uses CLS (Common Language Specification) to produce code
which can be integrated with other programming languages. Along with this the
.NET framework uses a FCL (Framework Class Library) which is a common set
of classes which can be used with the different languages.

Lack of security integration. .NET binds itself with the operating system so that
it integrates better with the security controls of the system.

Poor version control of system components. .NET improves this by supporting
the installation of different versions of the .NET framework. Users can choose
which of the version they install, and previous versions will be stored on the
host.

Weak integration with the WWW/Internet. .NET integrates WWW develop-
ment with code development by integrating ASP with VB/C#.

Agilent .NET Course: Introduction 2

In order to support these advancements, Microsoft has developed Visual Basic fur-
ther and integrated it with ASP, to produce VB.NET. C++ has also been advanced to
C# which incorporates many of the advanced features of Java. Figure 1.3 outlines
some of the key features of the .NET framework.

VB .NET C#
FCL
(Framework CLS
i H (Common
Class Library) Compiler L anguage
Web Specification)
component
CTS -
(Common MSIL (Microsoft
Type Intermediate Language)
System)
I

CLR (Common Language Runtime)
Allows the programs to run — similar to the Java Virtual Machine (JVM)

Figure 1.3: .NET Framework

1.2.3 .NET Environment

DLL'’s are typically installed in the system folders of the host. It is thus difficult to
keep track of new updates which enhance features or to fix bugs, as system files
where often overwritten by new ones. One method that was used to support these
updates was Direct X, which allowed software components to be registered onto a
system (Figure 1.4). Thus, when a program required a service, such as network sup-
port, it would call the required DLL.

The problem of version control has now been reduced using the .NET frame-
work. With this the key framework files are installed to a single folder. An example
of this is shown in Figure 1.5. It can be seen that the single folder makes it easier to
update with new versions. A key DLL is the Mscorlib.dll which contains many of
the key elements of the .NET framework, such as for file I/O, system interfacing and
security.

Agilent .NET Course: Introduction 3

RegSvr32

'E Mo DLL name specified,
L

Usage: regsvr32 [ju] [fs] [/n] [fi[:cmdiine]] diname

fu- Unregister server

s - Silent; display no message boxes

i- Call DllInstall passing it an optional [cmdline]; when used with ju calls dil uninstall
n- do not call DIRegisterServer; this option must be used with fi

Figure 1.4: DLL registration

Volume in drive C has no label.
Volume Serial Number is 1A83-0D9D

Directory of C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322
21/02/2003 08:24 7,680 Accessibility.dll
21/02/2003 06:00 98,304 alink.dll
20/02/2003 20:19 24,576 aspnet_filter.dll Prog ram
20/02/2003 20:19 253,952 aspnet_isapi.dll
20/02/2003 20:19 40,960 aspnet_rc.dll 1
20/02/2003 20:09 77,824 CORPerfMonExt.dll M S CO rl | b . d I I
21/02/2003 11:21 626,688 cscomp.dll
21/02/2003 08:24 12,288 cscompmgd.dll Arrays’
21/02/2003 08:24 33,792 CustomMarshalers.dll File 110,
29/07/2002 12:11 219,136 ¢_g18030.dI1
21/02/2003 11:21 524,288 diasymreader.dll T — System,
19/03/2003 02:52 245,760 envdte.dll -
20/02/2003 20316 798,720 EventLogMessages.dll Security
20/02/2003 20:06 282,624 fusion.dll
21/02/2003 08:24 7,168 1EExecRemote.dll
21/02/2003 08:24 32,768 IEHost.dll
21/02/2003 08:24 4,608 11EHost.dI1 T
21/02/2003 08:25 1,564,672 mscorcfg.dll
20/02/2003 20:09 77,824 mscordbc.dll
20/02/2003 20:09 233,472 mscordbi.dll
20/02/2003 20:09 86,016 mscorie.d
20/02/2003 20:06 311,296 mscorjit.dil
20/02/2003 20:09 98,304 mscorld.dll
21/02/2003 08:26 2,088,960 mscorlib.dll «——— H
Contains most of the code
20/02/2003 20:06 65,536 mscorpe.dll .
20/02/2003 20:09 143,360 mscorrc.dll that is called by the program
20/02/2003 20:09 81,920 mscorsec-dll
20/02/2003 20:09 77,824 mscorsn.dll
20/02/2003 20:07 2,494,464 mscorsvr.dll
20/02/2003 20:09 9,216 mscortim.dil
20/02/2003 20:08 2,482,176 mscorwks.dll
21/02/2003 05:42 348,160 msver71.dll
18/03/2003 20:03 544,768 msver7id.dil
20/02/2003 20:18 20,480 mtxoci8.dll
19/03/2003 02:50 196,608 office.dll
20/02/2003 20:09 90,112 PerfCounter.dll
21/02/2003 08:26 32,768 RegCode.dll

Figure 1.5: .NET framework installation folder

1.3 Visual Studio .NET Environment

The Visual Studio .NET Environment provides an integration of the Visual Studio

environment with new features, especially in automated code generation, and intel-
ligent sensing of user requirements. It uses projects (VBP) or solutions (SLN) to
create folders which contains the required elements of the program. In creating a
new project (with File->New=>Project), the user is then asked for the required appli-
cation (Figure 1.6). This include a C# or a VB project. Once selected the user then
selects a template for the project, such as:

e Console application. This uses a command line window for the output, and is
useful in applications which require text-based information.

Agilent .NET Course: Introduction 4

e Windows application. This uses type of application uses Windows for its inter-
face, such as with text boxes and menus.

Figure 1.7 shows an example of the Visual Studio C# .NET environment. The project
elements are stored in the Solution explorer window. The actual code is displayed in
the Code and Text Editor window. For C# programs, the file name has a .cs exten-
sion. A useful feature of the environment is the editor’s statement completion which
aids the developer by completing the required statement, as well as given help on
its syntax.

New Project
Project Types: Templates: [EJ
(22 visual Basic Projects U5] = [
‘2 Visual C# Projects ASP.NET Web ASP.NET Web ASP.NET
Name Of the fOIder (22 visual 1# Projects Application Service Mabile ...
Which contains the #-01 Visual Co-+ Projects
. . (£ setup and Deployment Projects s
Project files 53 Other Projects 0 [
the prOjeCt is stored. (13 visual Studio Solutions Web Cantrol |8 vinaows |
Library Service
T~ - am s (vl
Wa command-line application
Mame:] Moduledl_01
F0|der Whel’e Location: ~] C:\AgilentTrainingModule01 LI %
the project iS Stored Project will be created at C:\AgilentTraining\Module01\Module01_01.
FMore oK Cancel I Help I

Figure 1.6: Creating a project

1.3.1 Solution files

The solution file contains of the required elements of a project. The information is
contained in an sln file. In Figure 1.7, the solution file is named Module01_01.sln,
will the contents of the file is displayed in Figure 1.8. It can be seen that it defines
the environment of the development system, and defines a project file, which is de-
fined with a csproj file extension. In this case, the project file is named
Module01_01.csproj. The project file contains the references to all the required files
that the solution uses. In this case, as shown in Figure 1.9, the files used are App.ico,
AssemblyInfo.cs and Classl.cs. The C# code is contained in cs files, which are
known as class files, and is illustrated in Figure 1.10.

Along with this, most projects contain an AssemblyInfo class file, an example of
which is shown in Figure 1.11. .NET uses assembly to represent a single unit. An
assembly, to be covered in a future unit, is a collection of files that appear as a single
unit, such as a single DLL or an EXE. Along with class files, most projects contain an
icon file, which is associated with the executable program. An example of an icon is
shown in Figure 1.13.

Agilent .NET Course: Introduction 5

Class file (.cs) Solution explorer

K, M= x|
He ESt pew Boec Bl O Toos
IARSSRS -~ F- BB AT - YR <A) - RFEeR-.
- : E s R TD 4% %A,
Object Browser | Szart Page Ihl..u'l ik x| v - Mokl 01 3%
Moduled]_01.Classl] [a®Man{sngl] args) | @@
using System: —1| & souton 100" (1 prajict]
2115 6 Modukeot_o1
5 namespace Modulel 01 L “"'"’;‘m
LY e &::'mb»m.u
i / 5';.55!!'."!!!:!1:\'.:91 for Clasal. sl
/4 Fam tey peint for the applisation. Text Edltor
[STATREeRd]
BLAtic vold Main(etringl] azgs)
([Preparses 3 x
#/ TODO: hdd code to start application here ;I
;;-m.amnn.n‘_ Ll S
) gy 2 Editor's statement
) & Read —
& Reading .
ko completion e
- w4yl | e
T s T el
[— “ Virke) . 1
o 7 — iibeLre o i
D o b St et ot e Lot b e bt et e Bt irmaion
@ Tek et 5 Output| 8 e Resuls for Favortes 'Mﬁ Dyname Heo |
Ready 1 Ting 5] ¥ I lmel
Figure 1.7: Visual Studio C# .NET environment
| & e 3 |

-@ Solution 'Module01_01" (1 project)

Lock i | 3 Mocied1 01 x| O
- E Module01_01 :
S {References]

Qe
[@ =]
App.ico b %mww.u
AssemblyInfo.cs) sl s
[F] Classt.cs \@\‘ Moduied1_01.esprey
Moduadl_01.csproj.ussr

Moduiedl_01.sn
AHodu0l_01.80

i e Mecin3_0T cpmi
Flesdloms. | Mies
Ercodng [anm

R
@

I ERIEY
il

Figure 1.8: Example listing

Agilent .NET Course: Introduction 6

Solution Explorer - Moduled1_01 a X ModuleO1 01.sln

El =l Microsoft Visual Studio Solution File, Format Version 8.00
- . . . Project(""{FAEO4EC0-301F-11D3-BF4B-00C04F79EFBC}'") = "ModuleO1_01",
[é Solution ‘Moduled1_01' (1 project) “Module01_01.csproj”, "{1EA384DD-927E-4BO4-ABBS-BAOSDFAESAB3}"
= IE;’H Module0l 01 ProjectSection(ProjectDependencies) = postProject
] EndProjectSection
+ @ Bl EndProject
App.ico Global
[j AssemblyInfo.cs GlobalSection(SolutionConfiguration) = preSolution
[j Classl.cs Debug = Debug
Release = Release
EndGlobalSection

GlobalSection(ProjectConfiguration) = postSolution
{1EA384DD-927E-4B94-ABB8-BAOSDFAE5AB3} . Debug.ActiveCfg =
Debug] -NET
{1EA384DD-927E-4B94-ABB8-BAOSDFAESAB3} . Debug .Build.0 =
Debug] .NET
{1EA384DD-927E-4B94-ABB8-BAOBDFAESAB3} . Release .ActiveCfg =
Release| .NET
{1EA384DD-927E-4B94-ABB8-BAOBDFAE5AB3} .Release .Build.0 =
Release| .NET
EndGlobalSection
GlobalSection(ExtensibilityGlobals) = postSolution
EndGlobalSection
GlobalSection(ExtensibilityAddIns) = postSolution
EndGlobalSection
EndGlobal

Figure 1.9: Example sIn file

Solution Explorer - Moduled1_01 a x

ModuleOl1l_01.csprof

El =l <VisualStudioProject>
- - <CSHARP
feh Solution 'Module01_01' (1 project) ProjectType = "Local™
= ProductVersion = "'7.10.3077"
SchemaVersion = "2.0"
>
<Bui ld>
<Settings

Applicationlcon = "App.ico™
AssemblyKeyContainerName = "'
AssemblyName = "Module01_01'
AssemblyOriginatorKeyFile
DefaultClientScript = "JScript"”

DefaultHTMLPageLayout = "Grid"

DefaultTargetSchema = "IE50"

DelaySign = "false" OutputType = "Exe"
PreBui ldEvent " PostBuildEvent = "

RootNamespace = "ModuleO1_01"
RunPostBui ldEvent = ""OnBuildSuccess* >
<Config

Name = "Debug"

AllowUnsafeBlocks = "false™
/>
<Config

Name = "Release"

AllowUnsafeBlocks = "false™
BaseAddress = "'285212672"

p.ico* BuildAction = "Content” />
semblylInfo.cs" SubType = "Code"
“Compile™ />

IPath = ""Classl.cs" SubType = "'Code™
BuildAction = "Compile"” />

</Include>
</Files>
</CSHARP>

</VisualStudioProject>

Figure 1.10: Project file

Agilent .NET Course: Introduction 7

Solution Explorer - Moduled1_01 a X
Bl &

[&A Solution 'Module01_01' (1 project)
1

[App.ico
[#] AssemblyInfo.cs

[#] classl.cs »Classl.cs
using System;

namespace ModuleOl1_01
{
/// <summary>
/// Summary description for Classl.
/// </summary>
class Classl
{
/// <summary>
/// The main entry point for the application.
/// </summary>
static void Main(string[] args)
{
VZ4
// TODO: Add code to start application here
System.Console.WriteLine("Agilent

Course™);
System.Console.ReadLine();

Figure 1.11: CSfile

Solution Explorer - Moduled1_01 Z Assemb Iy Info.cs
using System.Reflection;
El =) using System.Runtime.CompilerServices;

1/

// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.

[e# Solution 'Module01_01' (1 project)

: AssemblyTitl 1
AssemblyDescription 1
AssemblyConfiguration(")]
AssemblyCompany ()]
AssemblyProduct
AssemblyCopyright
AssemblyTrademark
[assembly: AssemblyCulture(*"")]

E Classl.cs

).

/7

// Version information for an assembly consists of the following four values:
//

VZa Major Version

// Minor Version

/7 Build Number

/7 Revision

/7

// You can specify all the values or you can default the Revision and Build

Numbers
// by using the "*" as shown below:

[assembly: AssemblyVersion(*'1.0.*")]
: AssemblyDelaySign(false)]

AssemblyKeyFi I
: AssemblyKeyName(""*)]1}

Figure 1.12: Assemblyinfo class file

Agilent .NET Course: Introduction 8

Solution Explorer - Module01_01 1 x

Blla 2

[& Solution "Module01_01" (1 project)

= (& Moduleo1_o1

= (21 References o - Appiear |

App.ico
@ AssemblyInfo.cs .
] Classi.cs

Figure 1.13: Icon file

1.4 Simple Console Application

In Visual Studio a new project is defined, based on one of the above, as shown in
Figure 1.14. One of the basic projects is a Console Application, which typically sup-
ports user input with the System.Console.ReadLine() method, and supports output
with the System.Console.WriteLine() method. A simple program is:

Program 1.1:

using System;
namespace ConsoleApplicationl

class Classl
{
static void Main(string[] args)
{
System.Console _WriteIn(""This is my first program');
System.Console.ReadLine();
}
}
3+

which simply outputs a line of text, and waits for the user to press the <KENTER>
key.

Agilent .NET Course: Introduction 9

New Project

Project Types: Templates:

{7 Agilent T&M Toolkit Projects f [I, @ |
{3 visual Basic Projects I i
3 Visual G Projects Smart Device ASP.NET Web ASP.NET Web

D Visual J# Projects Application Application Service
+# (I Visual C++ Projects

(21 Setup and Deployment Projects

+ {0 Other Projects S %
{11 Visual Studio Solutions =4 L=y
ASP.NET Mabile \Web Control Console |
Web Application Library \Application ||

A project for ereating a command-line application

Hame: I ConsoleApplicationl
Project wil be created at C:\temp\ConsoleApplicationl.
FMore 0K Cancel I Help I

Figure 1.14: Console application

1.5 .NET Languages

The two main languages of .NET are VB.NET and C#. Example of their syntax are
shown in Program 1.5 and 1.6. The gulf between VB and C++ was, at one time, a
massive one, as C++ contained more error checking and had a strong syntax. With
the advent of VB.NET, the gulf between VB and the new version of C++ (C#) has re-
duced. Both are fully object-oriented, and the weaknesses of VB have now been
overcome. The true strength of C# is its simple and precise syntax which many pro-
fessional developers prefer to VB.

Program 1.2:

“ VB.NET Code

Dim j As Integer
Dim prime As Boolean
Dim i As Integer

Next j
IT (prime = True) Then
TextBox1l.Text = TextBox1l.Text & ","™ & Str(i)
End If
Next i

Sample Run 1.2

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97

Agilent .NET Course: Introduction 10

Program 1.3:

// C# Code
int i, j;
bool prime;
for (i=0;i<100;i++)
{

prime = true;

for (J=2;j<=i1/2;j++)

{

it ((i%J)==0) prime=false;

if (prime==true) textBoxl.Text+=" " + Convert.ToString(i);

Sample Run 1.2

1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97

Both languages have developed through different applications. VB has generally
evolved through BASIC, and onto Windows programming. As it is relatively easy
for novices to use it was integrated in Office applications, using VBA (Visual Basic
for Applications). This allowed Office applications to use the power of VB in an Of-
fice environment. VB was also the basis of the server-side scripting language named
ASP (Active Server Pages). For this VB.NET is generally considered as the best ap-
proach for Office and WWW-based applications.

C# has had a more nuts-and-bolts evolution, as C allowed the developers a great
deal of freedom in their approach. For this the compiler generally warned the devel-
oper of possible violations, which the developer often ignored. Thus often led to
run-time errors due to unforeseen bugs. C allows direct access to the memory. This
door was finally closed with the advent of Windows NT, which barred direct access
to memory. The next evolution of C was C++ which integrated the new object-
oriented methods with C++. It was a missed opportunity, though, as it still allowed
C programs to be written in the way they had always done. It was thus still a hybrid
language. The rise of languages such as Java and the focus on mobility, WWW-
based applications, and security caused Microsoft to re-examine their software de-
velopment tools, in order that they could lead the market in promoting their
operating system and applications. C# is thus aimed more at scientific/engineering
applications, and allows for more flexibility, such as using memory pointers. There
is also a great amount of code developed for many different applications, such as
DSP, interfacing, and so on. Engineers and scientists tend to favour the minimal
syntax of C# to the rather basic syntax of VB. The traditional weaknesses of VB, such
as the lack of flexibility and in the usage of variables before they are declared, have
gone, and only the core weakness of BASIC languages, itself, is the only weakness
left.

Agilent .NET Course: Introduction 11

1.6 Introduction to Object-orientation

We live in a world full of objects; so object-oriented programming is a natural tech-
nique in developing programs. For example, we have an object called a cup, and
each cup has a number of properties, such as its colour, its shape, its size, and so on.
It is efficient for us to identify it as a cup, as we know that cups should be able to
hold liquid, and we will place our cup beside all the other cups that we have. If we
were a cup designer then we could list all the possible properties of a cup, and for
each design, we could set the properties of the cup. Of course, some of the proper-
ties might not actually be used, but for a general-purpose design, we would specify
every property that a cup might have. For example, in a simple case we could have
the following properties:

Properties Cup1 Cup 2 Cup3
Shape (Standard/Square/Mug) Standard Square Mug
Colour (Red/Blue/Green) Blue Red Green
Size (Small/Medium/Large) Small Large Small
Transparency (0 to 100%) 100% 50% 25%
Handle type (Small/Large) Small Small Large

Thus, we have three choices of shape (square, standard or mug), three choices of
colour (red, blue or green), three choices in size (small, medium or large) and two
choices of handle type (small or large). In addition, we can also choose a level of
transparency of the cup from 0 to 100% (in integer steps). In object-oriented pro-
gram, the collection of properties is known as a class. Thus, we could have a class
for our cup which encapsulates all the design parameters for our cup. The instance
of our class, such as Cup 1, Cup 2 and Cup 3, are known as objects. We can create
many objects from our class. Along with this, there are certain things that we want
to do with the cup, such as picking it up, painting it, or even dropping it. In object-
orientation, these are known as methods, and are the functions that can be allowed
to operate on our objects.

Program 1.4 shows an object-oriented example of the cup, where a class named
Cup is created, of which an instance is named cup. A full description on this program
will be discussed in a later module. It uses variables, such as Shape, Colour, and Size
to define the property of an object.

Agilent .NET Course: Introduction 12

Program 1.4:

using System;
namespace ConsoleApplication2

public class Cup

{
public string Shape;
public string Colour;
public string Size;
public int Transparency;
public string Handle;

public void DisplayCup()

System.Console.WriteLine(*"Cup is {0}, {1}", Colour, Handle);
}

class Classl
{
static void Main(string[] args)
{
Cup cup = new Cup(Q;
cup.Colour = "Red"; cup.-Handle = "Small";
cup.DisplayCup(Q);
cup.Colour = "Green"; cup.Handle = "Small*;
cup.DisplayCup(Q);
System.Console.ReadLine();
}
T
ks

Sample Run

Cup is Red, Small
Cup is Green, Small

In the following example, we create a class named Circuit, of which we create a
new instance of it named cir. The class then has two methods, named Serial and
Parallel.

Program 1.5:

using System;
namespace ConsoleApplication2
public class Circuit
{ public string name;
public double Parallel(double rl1l, double r2)
return((r1*r2)/(ri1+r2));

public double Series(double r1, double r2)
{

}

return(rl+r2);

}

class Classl

Agilent .NET Course: Introduction 13

{

static void Main(string[] args)

{

¥
}
¥

double v1=100,v2=100;
double res;

Circuit cir = new Circuit(Q);

cir.name="Circuit 1";

res=cir.Parallel(v1,v2);

System.Console.WriteLine(""[{0}] Parallel resistance is {1} ohms",
cir.name,res);

cir.name="Circuit 2";

res=cir.Series(vl,v2);

System.Console.WriteLine(""[{0}] Series resistance is {1} ohms ",
cir.name,res);

System.Console.ReadLine();

Sample Run

[Circuit 1] Parallel resistance is 50 ohms
[Circuit 2] Series resistance is 200 ohms

In this case, we have used a single object (cir). Of course, we could have created
two objects, with:

ircuit cir2

Circuit cirl = new Circuit(Q);

new Circuit();

cirl_name="Circuit 1"; resl=cirl.Parallel(vl,v2);
cir2_name="Circuit 2"; res2=cir.Series(vl,v2);

Finally, for this section, Program 1.6 shows an example of a complex number class,
where a complex number object is created (r), which is made up of two components
(r.real and r.imag). The class defines two methods: mag() and angle(), which cal-
culate the magnitude and the angle of the complex number, using:

Z=X+]Jy

Z=x*+y?
7=y

(2=

t

Program 1.6:

using System;
namespace ConsoleApplication2

{

public class Complex

public double real;

Agilent .NET Course: Introduction 14

public double imag;

public double magQ)
{

return (Math.Sqgrt(real*real+imag*imag));

}
public double angle()
{

}

class Classl

{

static void Main(string[] args)

{

return (Math.Atan(imag/real)*180/Math.Pl);

string str;
double mag,angle;
Complex r = new Complex();

System.Console.Write("Enter real value >>");
str=System.Console.ReadLine();
r.real = Convert.Tolnt32(str);

System.Console.Write("Enter imag value >>");
str=System.Console.ReadLine();
r.imag = Convert.Tolnt32(str);

mag=r.mag();
angle=r.angle();

System.Console.WriteLine(""Mag is {0} and angle is {1}'",mag,angle);
System.Console.ReadLine();
}
}
ks

Sample Run

Enter real value >> 3
Enter imag value >> 4
Mag is 5 and angle is 53.130102354156

1.6.1 Using the environment

The C# code is displayed in the Editor windows, as illustrated in Figure 1.15. The
classes within the file are displayed within the Types pull down menu item. It can
be seen, that, in this case, that the classes are named:

e ConsoleApplication2.ArrayExample02().
e ConsoleApplication?2.test().

These are defined with the namespace of ConsoleApplication2 (namespaces will be
covered in a following section). Once within the class the members of the class are
shown in the right-hand pull down menu. The main graphics used to display the
members are:

“# - Method within a class. If it has a padlock, it is a private method.

Agilent .NET Course: Introduction 15

- Variable within a class. If it has a padlock, it is a private variable.

B'- Property of a class. Figure 1.16 shows an example of this.

Start Page ArrayExample02.cs® |

|§1§ ConsoleApplication2.test j ‘

ConsoleApplication2. ArrayExample02 \
& ConsoleApplication2.test i

using System;
using System.Collections; //
using System.IO; // required for Fi

class test
H
class ArrayExample02 Types

static void fillData (ArrayList v)

int i=0:

. \

Figure 1.15: Types

Start Page ArrayExample02.cs™® |

FileInfo theSourceFile = new FileInfo("..\\..\\test.cav");

o]

|§l§ ConsoleApplication2. ArrayExample02 j |,9@ test

5 class test 5® Main(string[] args)
. | i

=@ findFirstMid(ArrayList v,double mid)
=W findLargest{ ArrayList v)

¥ findSmallest(ArrayList v)

5% showData(ArrayList v)

o tasty

public int wvaluel;
r ¥
= class ArrayvExample02

int test:

(=]
theSourceFile = new FileIn¥o("..\\..\\test.csv"):
amReader reader = theSourceFile.
string text;
do
4
Methods

Variable

Figure 1.16: Class members

1.6.2 Viewing objects

Along with viewing the classes, it is possible to view the complete hierarchy of the
objects in the solution. This includes the hierarchy above the classes that have been
developed. Figure 1.17 shows an example of the object browser, and Figure 1.18
shows the browsing of the objects within the core library (mscorlib). In this case it
shows the objects within Systems.Collections.

Agilent .NET Course: Introduction 16

@ 9-SEG S mE (o F-R o - s R @mRE-.
(L8 S SPRET 3T TR A :

s TR AR T 1

et Fage | AmavEaacl? ot Object Arawser |
7 | Browse: Selected Comoonents - T jalielie L)
I' T Solcon camal (1 prapect)
= @ hernEarpieor o
=1l = 2 Referances
Aap.ko
b E
BB Assarmbiint.co
¥ 40 systemsan
e gystem
1«3 pstammd
o [Propernes 3 x
e e AWESOVIALY - Codelizk F-|
' [ElfmE
oot
Dehug

. | L
% Tash Lot .ITE] %mm Nesults for merrbens, cs memben Ehmn Rawits ER propteties | @ o e |
| Resds I

Figure 1.17: Object browsing

vujeLes FgHeEls Ul MingayLise

Figure 1.18: Object browsing for other classes

1.7 Basic elements of a C# program

C# follows its parents in having a minimal number of keywords. These are:

abstract event new struct
as explicit null switch
base extern object this
bool false operator throw
break finally out true

Agilent .NET Course: Introduction 17

byte fixed override
case float params
catch for private
char foreach protected
checked goto public
class if readonly
const implicit ref
continue in return
decimal int sbyte
default interface sealed
delegate internal short

do is sizeof
double lock stackalloc
else long static
enum namespace string

try
typeof
uint
ulong
unchecked
unsafe
ushort
using
virtual
volatile
void
while

C#, as the other C languages is case sensitive, thus the keywords must use the low-

ercase format. The main elements of a C# program are given next.

using Systen; «————— | using. Imports types defined

namespace ConsoleApplication2

in other namespaces.

{ —

public class Complex

{

public double real;
public double imag;
public int val { set {} get {} };

public double mag(Q
{

namespace. Defines a unique
name for the objects. In this case
the objects would have the name
of:
ConsoleApplications2.Complex()
ConsoleApplicaitons2.Class1()

return (Math._Sqrt(real*real+imag*imag)) .

}
public double angle()
{

return (Math_Atan(imag/real)*180/Math_Pl);

}

class Classl
{
static void Main(string[] args)
{
Complex r =
string str;
double mag,angle;

new Complex();

System.Console_Write("Enter real value >>

str=System.Console.ReadLine();
r.real = Convert.Tolnt32(str);

System.Console_Write("Enter imag value >>

\
Main(). This is the

entry point into the
program, and de-

DF fines the start and
end of the program.
It must be declared

"y inside a class, and

must be static.

Agilent .NET Course: Introduction 18

str=System.Console.ReadLine();
r.imag = Convert.Tolnt32(str);

mag=r.mag() ;
angle=r.angle();

System.Console._WriteLine(""Mag is {0} and angle is {1}',mag,angle);
System.Console._ReadLine();
}

}
}

1.7.1 Namespace

For the namespace, the full name of the Complex() class, its full name would be:

ConsoleApplication2._Complex()

Thus we could have used:

ConsoleApplication2._Complex r = new ConsoleApplication2._Complex()

but as we are in the same namespace it is possible to use the relative form.

1.7.2 using

The using keyword is used imports types from other namespaces. Figure 1.19 shows
types that are imported for System.Console.WriteIn(). It is important to import the
required namespace for the classes that are required. Examples include:

System: Array, Boolean, Byte, Char, Convert, DateTime, Double,
Enum, Int16, Int32, Int64, Math, Random, String, Void

System.Collections: ArrayList, BitArray, Hashtable, Queue, Stack.

System.IO: BinaryReader, BinaryWriter, File, Stream, StreamWriter,
StreamReader

Agilent .NET Course: Introduction 19

System.Console_Write("Enter real value >> ')

Browse: Selected Components

- customize... | 2}« ¥ - @ 5 g

QObjects

[=-+2 mscorlip

&} Microsoft

& {} Microsoft.Win32
= L} igystem
é‘(; Activator
=0 _AppDomain
ol: AppDomain

|[Empty
-

Members of ‘Consale’

-%¢ AppDomainSetup
0‘(: ‘AppDomainUnloadedExceptio
01: ApplicationException
@ Arglterator
% ArgumentException
0‘(: ‘ArgumentHulException
al: ‘ArgumentOutOfRangeExcept
ArithmeticException
#-9¢ Amay
0‘(: Array TypeMismatchException
3 AssemblyLoadEventargs

Namespace System
Member of: mscorlib

=@ AttributeTargets
#-%¢ AttrbuteUsageAttribute

“1; BadImageFormatException

¢ BitConverter

- Boolean

%2 Buffer

= Byte

[]--% CannotUnloadAppDomainException
#-E= Char

#-%¢ CharEnumerator

[“1; CLSCompliantAttribute

& ¢ Gonsole!

[J--ﬁx ContextBoundObject

[+ 01: ContextMarshalException

[+ *g ContextStaticAttribute

% Convert

¥ CrossAppDomainDelegate

#-= DataTime

|

% WriteLina(ByVal Char(), ByVal Integer, ByVal Integer)

& \WriteLina(ByVal Char)

@ VriteLine(Byval Decimal)

% WriteLina(ByVal Double)

@ WriteLine(ByVal Integer)

@ WriteLine(ByVal Long)

& WriteLina(ByVal Object)

@ writeLine(Byval Single)

=@ WriteLina(ByVal String)

& \WriteLina(ByVal String, ByVal Object)

@ writeLine(Byval String, ByVal Object, Byval Object)

-§ WriteLina(ByVal String, ByVal Object, Byval Object, Byval
@ WriteLine(ByVal String, ByVal ParamArray Object())

@ WriteLine(ByVal System.UInt32)

& WriteLina(ByVal System.UInt64)

% OpenstandardError() As System.I0.5tream

% OpenStandardError(ByVal Integer) As System.l0.Stream [o,

< i] m

Public MotInheritable Class Console

Inherits System.Object
Member of: System

Summary:
_W’

Figure 1.19: System namespace

Agilent .NET Course: Introduction 20

	Introduction
	Introduction
	.NET Framework
	Win32 API
	.NET Enhancements
	.NET Environment

	Visual Studio .NET Environment
	Solution files

	Simple Console Application
	.NET Languages
	Introduction to Object-orientation
	Using the environment
	Viewing objects

	Basic elements of a C# program
	Namespace
	using

