
Ode to Prof TCP and Mr IP

So what really makes the Internet work? Why does the WWW work so well? How
can we run so many applications over the Internet at the same time? How do
we know that our data has been received? How does the data actually know
how to get to a certain destination? Well, it's to do with TCP, IP and routing
protocols. These three parts make the whole of the Internet work, and work
reliably. The IP part is responsible for getting the data packets from the source
to the destination (using the IP address), the TCP part is then responsible for
sending the data to the required application program (using TCP sockets and
sequence numbers), and the routing protocols are responsible for passing on
information about how to get to destinations (using protocols such as RIP).
Isn't it wonderful how a user can run a few WWW browsers, a TELNET session,
an FTP session, a video conferencing session, and it all works, seamlessly, even
if there are multiple destinations. Well it's really Mr IP who's sending the data
to the right place, and deciding if the data on the network is for them, and Dr
TCP who either tags all the outgoing data and clearly identifies the virtual
connection, or reorders and passes the received data to the required
application. But, Dr TCP is no egg-head who lives in the realms of academia, he
makes sure that all the data is properly received, and makes sure that anything
that he sends, he gets a signed receipt for. If he doesn't get a receipt, he'll re-
send his data. But, what if the place that he's sending the data has blown-up, or
there's a postal strike. Well Dr TCP has that side covered also; he sends the data
again, and then waits for a time-out period. If no data is received, he gives up.
TCP and IP unite the world and allow everyone in the world to communicate,
no matter which computer they use, which operating system they are running,
which language they speak, or which network they use. It fits onto virtually
every type of networking technology. It'll work with Ethernet, ATM (although
with some difficulty), FDDI, ISDN, Modems, RS-232, blah, blah, blah. So, whom
should we thank for giving us these two great protocols. Of course DARPA
should be congratulated for conceiving it, but the main award must go to the
shy, but dependable workhorse of the computing industry: UNIX. Through
UNIX, TCP, UDP and IP have been allowed to blossom, and show their full
potential.

UDP transmission can be likened to sending electronic mail. In most electronic
mail packages the user can request that a receipt is sent back to the originator
when the electronic mail has been opened. This is equivalent to TCP, where
data is acknowledged after a certain amount of data has been sent. If the user
does not receive a receipt for its electronic mail then it will send another one,
until it is receipted or until there is a reply. UDP is equivalent to a user sending
an electronic mail without asking for a receipt, thus the originator has no idea if
the data has been received, or not.

TCP/IP is an excellent method for networked communications, as IP provides
the routing of the data, and TCP allows acknowledgements for the data. Thus,

the data can always be guaranteed to be correct. Unfortunately there is an
overhead in the connection of the TCP socket, where the two communicating
stations must exchange parameters before the connection is made, then they
must maintain and acknowledge received TCP packets. UDP has the advantage
that it is connectionless. So there is no need for a connection to be made, and
data is simply thrown in the network, without the requirement for
acknowledgements. Thus UDP packets are much less reliable in their
operation, and a sending station cannot guarantee that the data is going to be
received. UDP is thus useful for remote data acquisition where data can be
simply transmitted without it being requested or without a TCP/IP connection
being made.

The concept of ports and sockets is important in TCP/IP. Servers wait and listen
on a given port number. They only read packets which have the correct port
number. For example, a WWW server listens for data on port 80, and an FTP
server listens for port 21. Thus a properly set up communication network
requires a knowledge of the ports which are accessed. An excellent method for
virus writers and hackers to get into a network is to install a program which
responds to a given port which the hacker uses to connect to. Once into the
system they can do a great deal of damage. Programming languages such as
Java have built-in security to reduce this problem.

So why does TCP have a PhD, and IP doesn't? Well TCP operates at a higher
layer and allows the whole system to operate reliably. It does an excellent job,
whereas IP is a child that has grown up too quickly for its own use. It's excellent
the way that IP has created a world-wide addressing structure, but it's limited.
Why is it that my IP address is 146.176.151.130, while the address of a computer
in the same street, that uses the same Internet connection has the address of
138.154.33.100. Well it's because the IP address gives no indication about the
location of a node. Thus, we need complex routing protocols, in which routers
use to pass information about the best way to get to a node. Some of these
routing protocols, like IP, have grown up too quickly, and have outgrown their
usage. The worst offender is RIP, which basically defines the number of hops
(the number of routers in the path to the destination) that it takes to get to a
destination. Unfortunately the maximum number of hops is defined at 15, thus
if a destination is more that 16, the destination is not reachable. The other
problem with RIP is that it's a bit lazy, and basically doesn't try too hard. It
doesn't want to know about the bandwidth of a connection, or reliability, or its
cost. Hop count is hardly very taxing on computing the best way to get to a
destination. Just imagine if you were a car driver, and when you looked at a
map you choose the route which has the minimum number of junctions. This
could take you around country roads, or through congested roads. Normally we
would pick the route that allows the highest average speed (the highest
bandwidth), rather than the one with the minimum number of junctions.

So the Internet we have is the Internet we have. TCP, IP and RIP are there, and
they're not going to be moved for a long time. But the great thing about the

Internet is that it's not going to go away either. It also allows for migration. The
key to this is found in IP which can exist on its own with any other transport
protocol above it, and it allows for different version, which will allow the
Internet to migrate away from the current setup towards a more sensible
structure (such as one based on area codes). IP addresses are also very static. If
you move your computer from one network to another you must change your
IP address. This normally requires skilled operators to make it work. Why can
the network do it for you? In the next chapter, let's have a bit of fun, and look at
how the Internet could look in the future.

In developing TCP/IP programs there are two opposite ends for code
development. C++ code is complex, but very powerful, and allows for a great
deal of flexibility. On the other hand, the Visual Basic code is simple to
implement but is difficult to implement for non-typical applications. Thus, the
code used tends to reflect the type of application. In many cases Visual Basic
gives an easy-to-implement package, with the required functionality. I've seen
many a student wilt at the prospect of implementing a Microsoft Windows
program in C++. 'Where do I start', is always the first comment, and then 'How
do I do text input', and so on. Visual Basic, on the other hand, has matured into
an excellent development system which hides much of the complexity of
Microsoft Windows away from the developer. So, don't worry about computer
language snobbery. Pick the best language to implement the specification.

--- William J.Buchanan, June 6, 2001

