
 W.Buchanan 1

5 Web Infrastructures
8 On-line lecture: htt p://buchananweb.co.uk/adv/unit05 .html

5.1 Objectives

The key objectives of this unit are to:

¶ Provide an overview of Web -based architectures, especially in authentication and

access control.

¶ Define key protocols inv olved in next generation Web-based infrastructures, such

as Kerberos and SOAP over HTTP.

¶ Define scalable authentication infrastructures and protocols.

¶ Investigate scaleable and extensible architectures, including using LDAP.

5.2 Introduction

The Internet has been built around a wide range of services, such Web (HTTP), Re-

mote Access (Telnet), File Transfer (FTP), Email (SMTP), and so on, where each of

these protocols have used a specific TCP port to identify themselves. This produces

complex infrastructures wher e each service must provide its own authentication and

authorization. In the future systems are likely to be build around a Web infrastru c-

ture where a common authentication and authorization infrastructure is used to

provide access to a wide range of service, each of which can integrate over a wide

area.

5.3 Identity 2.0

The Internet was created to be an infrastructure of computers, each with a unique IP

address. This scope of the Internet is now increasing where it can support the inte-

gration of users, each with their own unique identity. Unfortunately systems have

been built where users must log onto each system with a unique identity instance.

This makes it difficult for users to manage their own environment, and thus user-

centric technologies techniques are being proposed which will allow users to manage

their own identity and then to use Information Cards (such as Microsoft Cardspace)

or OpenID , to verify their identity. There are many advantages of users controlling

their own digital ide ntity in that:

¶ They can choose a safe repository for it which focuses on keeping this identity

secure.

¶ They can share only the parts of the identity which are relevant to the access.

¶ They can provide their identity on one occasion, and then automatically sign on

using a digital identity card.

¶ They only have to remember one login and password.

2 Advanced Security and Network Forensics

Figure 5.1 shows an example of how a user could control their identity. In this case

the user may show their home telephone number and their NI number to a medical

practitioner, while their CV and email address would be exposed to their employer

(or future employers, of course).

Date of

birth
Home

Telephone

Number

Tax

reference

On-line

login

Medical

details

CV

Business

details

Medical

Work

details

Law

enforcement

Location

(Current)

Employer

Email

address

NI

Number

Bank

account

Work

telephone

Figure 5.1 Identity 2.0

5.4 SOAP over HTTP
SOAP (Simple Object Access Protocol) is a method of exchanging messages in a Web

Service infrastructure. It uses XML, and typically uses Remote Procedure Call (RPC)

or HTTP for message negotiation and transmission. It is thus used to send messages

and objects over infrastructures built on different types of systems. SOAP over HTTP

allows for messages to be transferred through HTTP, which will typically pass over a

firewall.

 SOAP uses XML to create a message, which is contained within an envelope,

along within an optional Header element. It then contains a Body element, and an

optional Fault element (which contains the reason why an error occurred in the pro c-

essing of a SOAP message). An example is:

<Envelope xmlns="http://schem as.xmlsoap.org/soap/envelope/">
 <Body>
 <Message xmlns="http://www.soapware.org" />
 </Body>
</Envelope>

The first line is the xmlsoap namespace, which identifies the envelope as a SOAP En-

velope. It is also possible to make namespaces explicit. Most SOAP messages do not

use the default namespace, but using an explicit one. An example of this is:

 W.Buchanan 3

<soap:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <Message xmlns:m="http://www.soapware.org/"/>
 </soap:Body>
</soap :Envelope>

Normally there are arguments added to an element (which is <message> in this case):

<soap:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <message xmlns:m="http://www.soapware.org/">
 <title>hello</title >
 <content>This is the message</content>
 </message>
 </soap:Body>
</soap:Envelope>

In SOAP, elements which are not supported are ignored, and the server will continue

to process the other elements. Along with this the envelope element can contain

other information, such as the encoding method:

<soap:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <soap:Body>
 <message xmlns:m="http://www.soapware.org/">
 <title>hello</title>
 <content>This is the message</content>
 </message>
 </soap:Body>
</soap:Envelope>

The format of data can also be defined, such as:

<soap:Envelope xmlns:SOAP="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle= "http://schemas.xmlsoap.org/soap/encoding/">
 <soap:Body>
 <message xmlns:m="http://www.soapware.org/">
 <title>hello</title>
 <content>This is the message</content>
 <msgid xsi:type="xsd:int">1234</msgid>
 </message>
 </soap:Body>
</so ap:Envelope>

which defines that msgid is a 32-bit integer. An example of a SOAP request is:

<soap:Envelope
 xmlns:xsi="http://www.w3.org/2001/XMLSchema - instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/ envelope/">
 <soap:Body>
 <CalcRootResponse xmlns="http://MyMath.com/maths">
 <CalcRootResult>9</CalcRootResult>
 </CalcRootResponse>
 </soap:Body>
</soap:Envelope>

and the response could be:

<double xmlns="http://MyMath.com/maths">3</double >

4 Advanced Security and Network Forensics

5.5 LDAP
LDAP (Lightweight Directory Access Protocol) is an application protocol which is

used with TCP/IP to query/modify directory services. It uses the form of a directory

which is a set of objects with attributes, each of which are organised in a logical and

hierarchical manner. This hierarchy is based on X.500, and is based on c (country), st

(state) dc (Domain Component), o (organisation), ou (Organisational Unit), l (loc a-

tion) and cn (Common Name) and uid (User ID) , where dn is a distinguishing name

(as is the name of the entity). In the example in Figure 5.2, distinguishing name is

made up of domain components (napier, ac,uk), an organisation unit (Comp) and a

common name (Bill).

dn: dc=napier,dc=ac,dc=uk

ou: Comp

cn: Bill

Domain

name

Organisational

Unit

Common

Name

uk

co

napier

Comp

Bill

Figure 5.2 Example of LDAP

An LDAP URL can then be used to refer to objects, such as for:

ldap://ldap.example.com/cn=Bill,dc=napier,dc=ac,dc=uk

creates a reference to all the user attributes for Bill within napier.ac.uk.

G3.1.1 X.500

X.500 directory services allows resources to be mapped into a logical and hierarchal

structure, which is not dependent on the actual domain or server which they connect

to. In this way the directory is global to the infrastructure, thus a user can log into all

authorized network -attached resources, rather than requiring to log into each sepa-

rate server. It uses resources by objects, properties, and values, with:

¶ Leaf objects ɬ which are network resources such as disk volumes, printers,

printer qu eues, and so on.

 W.Buchanan 5

¶ Container objects ɬ which are cascadable organization units that contain leaf ob-

jects. A typical organizational unit might be a company, department or group.

The top of the tree is the root object, to which there is only a single root for an entire

global database. Servers then use container objects to connect to branches coming off

the root object. This structure is similar to the organization of a directory file stru c-

ture and can be used to represent the hierarchical structure of an organization. Figure

5.3 illustrates an example with root, container and leaf objects. In this case, the or-

ganization splits into four main containers: Electrical, Mecha nical, Production and

Administration. Each of these containers has associated leaf objects, such as disk vol-

umes, printer queues, and so on.

 To improve fault tolerance , the branches of the tree (or partitions) are often stored

on multiple file servers . These mirrors are then synchronized to keep them up to

date. Another advantage of repl icating partitions is that local copies of files can be

stored so that network traffic is reduced.

OrganizationOrganization

ElectricalElectrical MechanicalMechanical ProductionProduction AdministrationAdministration

BINS/VOL1BINS/VOL1

Q_LASERQ_LASER

CD_DISKCD_DISK

SYS/VOL2SYS/VOL2

Container

objects

Container

objects

Root

objects

OrganizationOrganization

ElectricalElectrical MechanicalMechanical ProductionProduction AdministrationAdministration

BINS/VOL1BINS/VOL1

Q_LASERQ_LASER

CD_DISKCD_DISK

SYS/VOL2SYS/VOL2

Container

objects

Container

objects

Root

objects

Figure 5.3 Example structure

The container objects are:

[ROOT] . This is the top level of the inverted tree and con-

tains all the objects within the organizational structure.

Organization . This object class defines the organizational

name (such as FRED_AND_CO). It is normally the next

level after [ROOT] (or below the C=Country object).

User. This object defines an individual user.

Volume . This identifies the mounted volume for file se r-

vices. A network file system data links to the Directory

tree through Volume objects.

6 Advanced Security and Network Forensics

The most commonly used objects are:

Organizational unit . This object represents the OU part of the NDS

tree. These divide the NDS tree into subdivisions, which can represent

different geographical sites, different divisions or workgroups. Diffe r-

ent divisions might be PRODUCTION, ACCOUNT, RESEA RCH, and

so on. Each Organizational Unit has its own login script.

Organization role . This object represents a defined role within an or-

ganization object. It is thus easy to identify users who have an

administrative role within the organ ization.

Group . This object represents a grouping of users. All users within a

group inherit the same access rights.

Figure 5.4 shows the top levels of the NDS tree. These are:

¶ [ROOT] . This is the top level of the tree. The top of the NDS tree is the [ROOT]

object.

¶ C=Country . This object can be used, or not, to represent different countries, typi-

cally where an organization is distributed over two or more countries. If it is used

then it must be placed below the [ROOT] object. Most LDAP applications do not

normally use the Country object and uses the Organization Unit to define the

geographically located sites, such as SALES_UK.[ROOT], SALES_USA.[ROOT],

and so on.

¶ L=Locality . This object defines locations within other objects, and identifies net-

work portions. The Country and Locality objects are included in the X.500

specification, but they are not normally used, because many applications ignore

this. When used, it must be placed below the [Root] object, Country object, Or-

ganization object, or Organizational Unit object.

¶ O=Organization . This object represents the name of the organization, a company

div ision or a department. Each NDS Directory tree has at least one Organization

object, and it must be placed below the [Root] object (unless the tree uses the

Country or Locality o bject).

¶ OU=Organization Unit . This object normally represents the name of the organ-

izational unit within the organization, such as Production, Accounts, and so on.

At this level, User objects can be added and a system level login script is cre-

ated. It is normally placed below the Organiz ational object.

 W.Buchanan 7

[ROOT]

O=Organization
(such as: O=FRED_ANDCO)

OU=Organizational Unit
(such as: OU=TEST)

User1
Groups

Printer

Printer Server

Print Queues

User2

Volumes

OU=Organizational Unit

(such as: OU=SALES)

Figure 5.4 LDAP Example

A few examples are:

 ÊÊÌÚÚɯÛÖɯ%ÙÌËɀÚɯÍÖÓËÌÙ cn=Fred Folder,ou=people,dc=fake,dc=com

Identifier for Fred login uid=fred,ou=people,dc=fake,dc=com

Identifier for Fred cn=fred,ou=people,dc=fake,dc=com

The LDAP record stores information with in the object using attribute pairs, such as

(case of the letters is stored, but are not used for searches):

dn: ou=people,dc= fake ,dc=com

 objectClass: organizationalUnit

 ou: people

dn: ou=groups,dc= fake ,dc=com

 objectClass: organizationalUnit

 ou: grou ps

dn: uid=fred, ou= people , dc=fake, dc=com

 objectClass: inetOrgPerson

 objectClass: posixAccount

 objectClass: shadowAccount

 uid: fred

 givenname: Fred

 sn: Fredaldo

 cn: Freddy Fredaldo

 telephonenumber: 45511332

 roomnumber: C.63

 o: Fake Inc

 mailRoutingAddress: f.smith@fake.com

 mailhost: smtp.fake.com

 userpassword: {crypt}ggHi99x

 uidnumber: 5555

 gidnumber: 4321

 homedirectory: /user/fred

 loginshell: /usr/local/bin/bash

dn: cn=example,ou=groups, dc=fake,dc=com

 objectClass: posixGroup

 cn: example

 gidNumber: 10000

8 Advanced Security and Network Forensics

5.6 Authentication Infrastructures
Authentication can normally be done using a local device, such as a switch or access

point, but this method does not scale well for larger -scale infrastructures. It has the

advantage, though that a failure in parts on the infrastructure will still allow users

and devices to authenticate locally. In most systems, though, authentication is cen-

tralised, in order to synchronize user names, identity provision, and so on. As this is

a key service, there are normally backup and failover devices, as a lack of authentica-

tion from the central resource may lead to a complete failure of the infrastructure.

 For a centralised model, as illustrated in Figure 5.5, normally a device or per son

(known as a supplicant) asks an access device (such as a switch or a wireless access

point) to connect to the system, which will then forward the request to the central

authentication server, which will then respond back to the access device with the r e-

quired credentials, such as for a username/password, a digital certificate, a MAC

address, or any other type of identification method (such as for a fingerprint, iris

scan, and so on). The user/device then responds with its credentials, which are

checked against an identity provider (such as a PKI server) and/or to a domain server

(such as for a Windows or a Samba domain one). Typical methods to verify user

credentials include SQL, Kerberos, LDAP , and Active Dire ctory servers. A particular

problem is then how to then map the identity and authentication to the actual access

rights to the system, and thus to other external trusted systems.

Device

Authenticator

Identity

Checker

Centralised

Authentication

Server

Access

Rights

Domain

Rights

Domain

Checker

Nurse:

Df asd a

Df asd fa

Dfasdf as

Server:

Dfasdf as

Df a df as

 dfasdf as

My Net:

D fs dfa

Df asd

 as

Identity

Figure 5.5 Generalised authentication infrastructure

5.7 802.1x Authentication Infrastructure

The 802.1x standard supports the authentication of users and devices onto the net-

work at the point of their connection. With this a supplicant connects to an

authenticator , such as a switch or a wireless access point. It then is setup to send the

request for authentication to an authentication server such as a RADIUS or Tacacs+

server (Figure 5.6). If the user/device is authenticated it sends an acceptance message

http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
http://en.wikipedia.org/wiki/LDAP
http://en.wikipedia.org/wiki/Active_Directory

 W.Buchanan 9

back to the authenticator, which then allows the user/device onto the network. The

authentication server is kept synchronised with the correct authentication details,

such as synchonising with a Windows domain server for usernames and passwords,

or with a PKI server for di gital certificates. The 802.1x standard has many advantages

including that it connects to many different types of networks including 802.11 (wir e-

less), 802.3 (Ethernet) and PPP (Serial), and support a wide range of authentication

methods, such as LEAP (username and password), PEAP (username/password or

digital certificate), and so on. A great advantage is that users and devices are not al-

lowed onto the network unle ss they have the required credentials, even though they

have a physical or wireless connection. In the future more network infrastru ctures

will embed 802.1x so that no user or device connects, unless they have the required

authentication. For smaller networks, the authenticator server could be built into the

authenticator by using a local authentic ation server. This is defined as local authenti-

cation.

Wireless

access point

Centralised

RADIUS or Tacacs+

server

Wireless

access point

Supplicant

Authenticator

Authenticator

server

Windows

Domain

server

U
se

rn
a
m

e
s

a
n
d

p
a
ss

w
o
rd

s

PKI server

 Figure 5.6 802.1x authentication infrastructure

Authentication techniques

It has been seen that standard 802.11 authentication methods can be easily overcome.

There are several standard authentication methods, some of which have been devel-

oped by vendors, such as Cisco Systems, while others are international standards.

Basically authentication consists of an authentication framework, an authentication

algorithm and an encryption technique. The proposed enhanced authentication

method tries to split these up with:

10 Advanced Security and Network Forensics

¶ 801.1x1 authentication . This defines the authentication framework which can

support many authentication types. Ethernet network have developed so that it is

now the standard method of connecting to a wired network. The IEEE 802.1x

standard aims to extend Ethernet onto wireless networks and dialup connections.

It uses a port authentication method that could be used on a range of networks,

including 802.3 (Ethernet), 802.11 (wireless) and PPP (serial connections). IEEE

802.1x thus defines authentication and key management, while 802.11i defines ex-

tended security. At the present the WiFi Alliance (WFA) has published the 802.11

security specification, which is known as Wi -fi Protected Access (WPA).

¶ EAP (Extensible Authentication Protocol). This defines the actual implementation

of the authentication method. It thus provides centralized authentication and d y-

namic key distribution. It has be en developed by the IEEE 802.11i Task Group as

an end-to-end framework and uses 802.1x with:

o Authentication . This is of both the client and the authentication server

(such as a RADIUS server).

o Encryption keys . These are dynamically created after authentication.

They are not common to the whole network.

o Centralized policy control . A session time-out generates a reauthentica-

tion and the generation of new encryption keys.

¶ Encryption . This replaces WEP with TKIP (Temporal Key Integrity Protocol),

which is based on WEP but which overcomes its major weaknesses.

Figure 5.7 shows that the 802.1x framework provides an interface between many dif-

ferent network types and a number of differing authentication methods (such as

LEAP, EAP-TLS, and so on). It can be see that 802.1x gets in-between the Layer 3 pro-

tocol and the link layer, which means that the device cannot directly communicate

with the network unless it has been authenticated. The framework supports a wide

range of authentication methods, and also network technologies, and is seen as a sin-

gle standard for the future of authenticated systems. As previously mentioned,

802.1x uses three main entities:

¶ Supplicant . This operates on the station client.

¶ Authenticator . This operates on the access point.

¶ Authenticator server. This operates on a RADIUS server.

Figure 5.8 shows the basic message flow for 802.1x authentication, where the suppli-

cant sends its identity to the access point, which is then forwarded to a RADIUS

server. The RADIUS server then authenticates the client, and vice-versa. If these are

successful the RADIUS server sends a RADIUS-ACCEPT message to the access point,

which then allows the client to join the network.

1 Note 802.1x ɬ Port-based authentication, and is not to be confused with 802.1q with

VLAN tagging and is used to provide a trunk between switches, or with 802.11x

which is any existing or developing standard in the 802.11 family.

 W.Buchanan 11

IP

LEAP EAP-TSL PEAP

802.1x

802.3

(Ethernet)

802.5

(Token Ring)

802.11

(Wireless)

PPP

(Serial)

Other methods

Others

Method

layer

802.1x

layer

Link

layer

Layer 3

Figure 5.7 802.1x layers

RADIUS

server

Start

Request ID

ID ID

RADIUS server authenticates the client

Client authenticates the RADIUS server

Broadcast key

Key length

Figure 5.8 Basic message flow for 802.1X

Security weaknesses of RADIUS

A RADIUS servers provides a useful authentication method but suffers from many

weaknesses, and work well within organizational infrastru cture, but not between

differing domains. RADIUS is especially weak, as it uses stateless UDP protocol,

which allows for e asier packet forging and spoofing. RADIUS uses UDP port 1812

for Aut hentication and 1813 for Accounting , and uses a shared secret key between

the authenticator and the server. Particular problems for RADIUS include:

¶ Brute-forcing of user credentials. A malicious user can continually access the

RASIUS server with a range of user ID and associated passwords, and RADIUS

may eventually ret urn a success authentication if a match is found.

¶ Denial of service. RADIUS uses UDP, which is connectionless, thus it is difficult

to determine malicious from non -malicious UDP packets on ports 1812 and 1813.

12 Advanced Security and Network Forensics

¶ Session replay. There is very little authentic ation of the messages involved in

RADIUS, thus malicious users can reply valid ones back into the next at future

times.

¶ Spoofed packet injection . There is very little authentication of data packets built

into RADIUS, and it can thus suffer from spoofed pac ket injection.

¶ Response Authenticator Attack . RADIUS uses an MD5-based hash for the Re-

sponse Authenticator, thus if an intruder captures a valid Access-Request,

Access-Accept, or Access-Reject packet sequence, they can launch a brute force

attack on the shared secret. This is because the intruder can compute the MD5

hash for (Code+ID+Length+RequestAuth+Attributes), as most of the parts of the

Authenticator are known , and can thus focus on the shared secret key.

¶ Password Attribute -Based Shared Secret Attack. Intruders can determine the

share secret key but attempt ing to authenticate using a known password and

then capturing the resulting Access-Requestpacket. After this they can then XOR

the protected portion of the User -Password attribute with the password that they

have used. A brute -force attack can then be done on the shared secret key

¶ Shared Secret. The basis methodology of RADIUS is that the same shared secret

by many clients. Thus weakly protected clients could reveal the secret key.

Other weaknesses include:

¶ User Password-Based Attack.

¶ Request Authenticator -Based Attacks.

¶ Replay of Server Responses.

5.8 OpenID

OpenID is one method of creating a federated identity management system. It now

includes Google mail profile, along with major organizations such as AOL, BBC,

PayPal and Verisign. It uses a URL to identify the user, such as:

http://billbuchanan.myopenid.com/

The site hosting the identity then has a list of the accesses for the identity, and sites

visited. It is an open system, and can be used as a single-sign-on for access to Web

sites. Along with this it supports multiple forms of authentication, such as for smart

cards, passwords and biometrics. This is set not by the Web site, or by the protocol,

but by the OpenID provider. Figure 5.9 shows an example of the creation of an

OpenID account, and Figure 5.10 shows how this can be used to log into a site which

supports OpenID.

 W.Buchanan 13

Figure 5.9 myOpen ID account

Figure 5.10 myOpen ID login

5.9 Kerberos

The major problem with current authentication systems is that they are not scalable,

and they lack any real form of proper authentication. A new authentication archit ec-

ture is now being proposed, which is likely to be the future of scalable authentication

infrastructures ɬ Kerberos. It uses tickets which are gained from an Identity Provider

(IP ɬ and also known as an Authentication Server), which are trusted to provide an

identity to a Relying Party (RP). The basic steps are:

Client to IP:

¶ A user enters a username and password on the client.

¶ The client performs a one-way function on the entered password, and this b e-

comes the secret key of the client.

14 Advanced Security and Network Forensics

¶ The client sends a cleartext message to the IP requesting services on behalf of the

user.

¶ The IP checks to see if the client is in its database. If it is, the IP sends back a ses-

sion key encrypted using the secret key of the user (MessageA). It also sends back

a ticket whi ch includes the client ID, client network address, ticket validity p e-

riod, and the client/TGS (Ticket Granting Server) session key encrypted using the

secret key of the IP (MessageB).

¶ Once the client receives messages A and B, it decrypts message A to obtain the

client/TGS session key. This session key is used for further communications with

IP.

Client -to-RP:

¶ The client now sends the ticket to the RP, and an authentication message with the

client ID and timestamp, encrypted with the client session key (Me ssageC).

¶ The RP then decrypts the ticket information from the secret key of the IP, of

which it recovers the client session key. It can then decrypt MessageD, and sends

it back a client-to-server ticket (which includes the client ID, the client network

address, validity period, and the client/server session key). It also sends the cli-

ent/server session key encrypted with the client session key.

The Kerberos principle is well -known in many real -life authentication, such as in an

airline application, where t he check-in service provides the authentication, and

passes a token to the passenger (Figure 5.11). This is then passed to the airline secu-

rity in order to board the plane. There is thus no need to show the form for the

original authentication, as the passenger has a valid ticket. Figures 5.12 and 5.13

show the detail of the Kerberos protocol which involves an A uthentication Server,

and a Ticket Grant Server.

Figure 5.11 Ticketing authentication

 W.Buchanan 15

`

Bob

Authentication

Server (AS)

Ticket

Granting Server (TGS)

Key Distribution

Centre (KDC)

AS_REQ is the initial user authentication request. This message is

directed to the KDC component known as Authentication Server (AS).

AS_REQ = (
Pr i nci pal Cl i ent , Pr i nci pal Ser vi ce, I P_l i s t , Li f et i me)

Eg PrincipalClient = Principal for user (such as fred@home.com), IP_list

= all IP address which will use the ticket (may be null if behind NAT),

lifetime = require life of the ticket.

AS_REP. Reply for the previous request. It contains the TGT (Ticket

Granting Ticket - encrypted using the TGS secret key) and the session key

(encrypted using the secret key of the requesting user).

TGT = (Pr i nci pal Cl i ent , kr bt gt /
REALM@REALM, P_l i s t , Ti mest amp, Li f et i me, SKTGS)

AS_REP = { Pr i nci pal Ser vi ce, Ti mest amp, Li f et i me, SKTGS } KUser {
TGT } KTGS

SKTGS ï Session key of the TGS ï randomly created.

KTGS ï Key of TGS.

Kuser ï Secret key of Bob.

Note:

{ Message } ï The curly brackets identify an encrypted message.

(Message) ï The round brackets identify an non-encrypted

message.

AS_REQ

AS_REP

Figure 5.12 Kerberos protocol

S
ta

te
fu

l
fi
re

w
a

ll
K

e
rb

e
ro

s

Bob

Authentication

Server (AS)

Ticket

Granting Server (TGS)

Key Distribution

Centre (KDC)

AS_REQ = (Pr i nci pal Cl i ent , Pr i nci pal Ser vi ce, I P_l i s t , Li f et i me)

TGT = (Pr i nci pal Cl i ent , kr bt gt / REALM@REALM, P_l i s t , Ti mest amp, Li f et i me, SKTGS)

AS_REP = { Pr i nci pal Ser vi ce, Ti mest amp, Li f et i me, SKTGS } KUser { TGT } KTGS

AS_REQ

AS_REP

SKTGS ï Session key of the TGS ï randomly created.

KTGS ï Key of TGS.

Kuser ï Secret key of Bob.

SKService ï Secret key of the service

TGS_REQ

Aut hent i cat or = { Pr i nci pal Cl i ent , Ti mest amp } SKTGS

TGS_REQ = (Pr i nci pal Ser vi ce , Li f et i me , Aut hent i cat or) { TGT } KTGS

Bob now needs

a service ticket

TGS_REP

TSer vi ce = (Pr i nci pal Cl i ent , Pr i nci pal Ser vi ce, I P_l i s t , Ti mest amp, Li f et i me, SKSer vi ce)

TGS_REP = { Pr i nci pal Ser vi ce, Ti mest amp, Li f et i me, SKSer vi ce } SKTGS { TSer vi ce } KSer vi ce

Figure 5.13 Kerberos protocol

Microsoft CardSpace

The Microsoft .NET 3.0 framework has introduced th e CardSpace foundation

framework, which uses Kerberos as its foundation. For this it defines a personal card,

16 Advanced Security and Network Forensics

which is encrypted and created by the user, and contains basic users details on the

user, such as their name, address, email address, and so on. A managed card is cre-

ated by an IP (Identity Provider) and validates the user. The managed card thus does

not keep any personal details on login parameters and bank card details (as these are

kept off -site). The user can thus migrate one from machine to another, and migrate

their card (Figure 5.14). A personal card, of course, does not require an IP, and a card

can be passed directly to the RP (Figure 5.15).

Personal Card

Managed Card

(for on-line purchases,

managed logins,

and so on

Secure communication of

details

Secure storage

of details

Storage of sensitive details

(such as credit card details,

passwords, and so on)

Off

machine

storage

Verification of the user

Roaming

details

Figure 5.14 Personal and managed cards

Figure 5.15 Personal cards

 W.Buchanan 17

5.10 WS-*

A major problem with the interconnection of differing types of systems involves the

transfer to data between them, and in the differences of the protocols used. To over-

come this the WS-* inf rastructure is being proposed as a way for the interconnection

of systems using an open standard. This is illustrated in Figure 5.16. It can be seen

that the infrastructure can use Kerberos or the traditional PKI method for identific a-

tion.

User

Kerberos

Relying Parity (RP)

Identity

PKI Server

Digital Certificate Granter (Verisign)

Security Token Service (STS)

Identity selector

WS-Security Policy

WS-Security

SAML (Security Assertion Markup

Language)

Or Custom

X509

Certificate

Identity

Provider (IP)

Open XML standards:

WS-*:-

WS-Trust, WS-Metadata

Exchange Framework

Figure 5.16 Standardized protocols

5.6.1 SAML

Security Assertion Markup Language (SAML) uses XML, and is a proposed method

for interconnected between authentication and authorization infrastructures over

multiple domains. It also focuses on providing a SSOs (Single Sign-On). The SAML

the user is defined as the principal, and has an at least one identity provider. After

the identity has been provided, access control can then be defined based on this. Fig-

ure 5.17 shows this type of infrastructure.

